scholarly journals Efficient Production of Human Norovirus-Specific IgY in Egg Yolks by Vaccination of Hens with a Recombinant Vesicular Stomatitis Virus Expressing VP1 Protein

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 444 ◽  
Author(s):  
Yang Zhu ◽  
Yuanmei Ma ◽  
Mijia Lu ◽  
Yu Zhang ◽  
Anzhong Li ◽  
...  

Human norovirus (HuNoV) is responsible for more than 95% of outbreaks of acute nonbacterial gastroenteritis worldwide. Despite major efforts, there are no vaccines or effective therapeutic interventions against this virus. Chicken immunoglobulin Y (IgY)-based passive immunization has been shown to be an effective strategy to prevent and treat many enteric viral diseases. Here, we developed a highly efficient bioreactor to generate high titers of HuNoV-specific IgY in chicken yolks using a recombinant vesicular stomatitis virus expressing HuNoV capsid protein (rVSV-VP1) as an antigen. We first demonstrated that HuNoV VP1 protein was highly expressed in chicken cells infected by rVSV-VP1. Subsequently, we found that White Leghorn hens immunized intramuscularly with rVSV-VP1 triggered a high level of HuNoV-specific yolk IgY antibodies. The purified yolk IgY was efficiently recognized by HuNoV virus-like particles (VLPs). Importantly, HuNoV-specific IgY efficiently blocked the binding of HuNoV VLPs to all three types (A, B, and O) of histo-blood group antigens (HBGAs), the attachment factors for HuNoV. In addition, the receptor blocking activity of IgY remained stable at temperature below 70 °C and at pH ranging from 4 to 9. Thus, immunization of hens with VSV-VP1 could be a cost-effective and practical strategy for large-scale production of anti-HuNoV IgY antibodies for potential use as prophylactic and therapeutic treatment against HuNoV infection.

1972 ◽  
Vol 18 (4) ◽  
pp. 465-471 ◽  
Author(s):  
E. Rossier ◽  
D. Landry-Pigeon

Thirty-one normal blood donors were bled for purification and large-scale culture of lymphocytes in the presence of phytohemagglutinin (P.H.A.). Despite large fluctuations in the yield of lymphocytes, viability and transformation rates were high and reproducible.Infection of P.H.A.-stimulated lymphocyte cultures from different donors, with vesicular stomatitis virus, produced highly variable yields which at best were 10 × lower than from other tissue-culture systems. Production was probably limited by the low proportion of virus-susceptible cells and the influence of interferon.


2008 ◽  
Vol 74 (10) ◽  
pp. 2967-2975 ◽  
Author(s):  
Ryan D. Woodyer ◽  
Nathan J. Wymer ◽  
F. Michael Racine ◽  
Shama N. Khan ◽  
Badal C. Saha

ABSTRACT A new synthetic platform with potential for the production of several rare sugars, with l-ribose as the model target, is described. The gene encoding the unique NAD-dependent mannitol-1-dehydrogenase (MDH) from Apium graveolens (garden celery) was synthetically constructed for optimal expression in Escherichia coli. This MDH enzyme catalyzes the interconversion of several polyols and their l-sugar counterparts, including the conversion of ribitol to l-ribose. Expression of recombinant MDH in the active form was successfully achieved, and one-step purification was demonstrated. Using the created recombinant E. coli strain as a whole-cell catalyst, the synthetic utility was demonstrated for production of l-ribose, and the system was improved using shaken flask experiments. It was determined that addition of 50 to 500 μM ZnCl2 and addition of 5 g/liter glycerol both improved production. The final levels of conversion achieved were >70% at a concentration of 40 g/liter and >50% at a concentration of 100 g/liter. The best conditions determined were then scaled up to a 1-liter fermentation that resulted in 55% conversion of 100 g/liter ribitol in 72 h, for a volumetric productivity of 17.4 g liter−1 day−1. This system represents a significantly improved method for the large-scale production of l-ribose.


2012 ◽  
Vol 1387 ◽  
Author(s):  
Nitin Kalra ◽  
Kalathur Santhanam ◽  
David Olney

ABSTRACTThe electrochemical decomposition of water is an attractive method, however, the performance of the electrodes and efficiencies are of great concern in its large scale production. In this context, we wish to report here the superior performance of Ni-multiwalled carbon nanotube composite as cathode in the decomposition of water. The current voltage curves recorded with this electrode in different media showed a significant electrocatalysis in the reduction of hydrogen ion; the background electrolysis is shifted in the anodic direction. The nanocomposite composition has been found to be crucial in the efficient production of hydrogen. A coulombic efficiency of about 68% has been obtained at this electrode with a hydrogen production rate of 130L/m2 d. This electrode is more efficient than the 316L stainless steel (composition in percentage: C 0.019, Cr 17.3, Mo 2.04, Ni 11.3, Mn 1.04, N 0.041, Fe bulk) cathode that produces 10 ml/h at an area of 20 cm2 (5L/m2.h) (2). The results obtained with different electrolytes, performance variation with electrode composition, and current densities will be presented. The trials carried out using solar panel instead of DC power source showed similar hydrogen production rates and efficiencies.


1999 ◽  
Vol 65 (9) ◽  
pp. 4211-4215 ◽  
Author(s):  
Danilo Porro ◽  
Michele M. Bianchi ◽  
Luca Brambilla ◽  
Rossella Menghini ◽  
Davide Bolzani ◽  
...  

ABSTRACT Interest in the production of l-(+)-lactic acid is presently growing in relation to its applications in the synthesis of biodegradable polymer materials. With the aim of obtaining efficient production and high productivity, we introduced the bovinel-lactate dehydrogenase gene (LDH) into a wild-type Kluyveromyces lactis yeast strain. The observed lactic acid production was not satisfactory due to the continued coproduction of ethanol. A further restructuring of the cellular metabolism was obtained by introducing the LDH gene into aK. lactis strain in which the unique pyruvate decarboxylase gene had been deleted. With this modified strain, in which lactic fermentation substituted completely for the pathway leading to the production of ethanol, we obtained concentrations, productivities, and yields of lactic acid as high as 109 g liter−1, 0.91 g liter−1 h−1, and 1.19 mol per mole of glucose consumed, respectively. The organic acid was also produced at pH levels lower than those usual for bacterial processes.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Aleksandra M. Mirończuk ◽  
Katarzyna E. Kosiorowska ◽  
Anna Biegalska ◽  
Magdalena Rakicka-Pustułka ◽  
Mateusz Szczepańczyk ◽  
...  

Abstract Background Yarrowia lipolytica is an unconventional yeast with a huge industrial potential. Despite many advantages for biotechnological applications, it possesses enormous demand for oxygen, which is a bottleneck in large scale production. In this study a codon optimized bacterial hemoglobin from Vitreoscilla stercoraria (VHb) was overexpressed in Y. lipolytica for efficient growth and erythritol synthesis from glycerol in low-oxygen conditions. Erythritol is a natural sweetener produced by Y. lipolytica under high osmotic pressure and at low pH, and this process requires high oxygen demand. Results Under these conditions the VHb overexpressing strain showed mostly yeast-type cells resulting in 83% higher erythritol titer in shake-flask experiments. During a bioreactor study the engineered strain showed higher erythritol productivity (QERY = 0.38 g/l h) and yield (YERY = 0.37 g/g) in comparison to the control strain (QERY = 0.30 g/l h, YERY = 0.29 g/g). Moreover, low stirring during the fermentation process resulted in modest foam formation. Conclusions This study showed that overexpression of VHb in Y. lipolytica allows for dynamic growth and efficient production of a value-added product from a low-value substrate.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Xinxuan Wang ◽  
Lili Huang ◽  
Zhensheng Kang ◽  
Heinrich Buchenauer ◽  
Xiaoning Gao

StrainHhs.015T(Saccharothrix yanglingensissp. nov.), an antagonistic endophyticSaccharothrixactinomycete isolated from roots of cucumber plants, exhibited a broad antimicrobial spectrum in vitro and was active as a biocontrol against plant diseases in field trials. The SSY medium was used for production of antimicrobial metabolites by strainHhs.015T. However, this medium is too expensive for large-scale production. In this study, an alternative culture medium, based on agricultural waste products (e.g., apple pomace), was optimized. The results showed that the alternative medium contained 15 g apple pomace, 4 g rapeseed meal, 0.1 gKH2PO4, and 0.6 gMgSO4·7H2Oin 1 L distilled water. This medium reduced the material costs by 91.5% compared to SSY medium. Response surface methodology (RSM) was used to investigate the influence of environmental variables on production of compounds of antimicrobial metabolites. The optimal conditions achieved were initial pH 7.0, medium volume of 90 mL in 250 mL flasks, rotary speed of 100 rpm, temperature 25C, and inoculation volume of 15.8%. The antimicrobial activity was increased by 20% by optimizing the environmental parameters. The results obtained allow an efficient production of components with antimicrobial activity by strainHhs.015Ton a large scale at low costs.


2006 ◽  
Vol 19 (1) ◽  
pp. 205873920601900 ◽  
Author(s):  
R. Franconi ◽  
S. Massa ◽  
E. Illiano ◽  
A. Muller ◽  
A. Cirilli ◽  
...  

The human papillomavirus 16 (HPV16) E7 oncoprotein can be considered a ‘tumor-specific antigen’ and, therefore, it represents a promising target for a therapeutic vaccine against HPV-associated tumors. Efficient production of E7 protein with a plant-based transient expression system has been already described and it was demonstrated that E7-containing crude plant extracts confer partial protection against tumor challenge in a mouse model system. Before adopting the plant-based system as a cost-effective method for the production of an E7-based anti-cancer vaccine, some aspects, such as the oncoprotein yield, need further investigation. In the present study, we report the transient expression, mediated by a potato virus X (PVX)-derived vector, of the E7 protein targeted to the secretory system of Nicotiana benthamiana plants by using a plant-derived signal sequence. Targeting the antigen to the secretory pathway enhanced the E7 protein expression levels about five-fold. Mice immunized by s.c. administration with crude foliar extracts containing E7 showed strong stimulation of cell-mediated immune response after five boosters, as detected by ELISPOT. After challenging with the E7-expressing C3 tumor cells, tumor growth was completely inhibited in 80% of the vaccinated animals and a drastic reduction of tumor burden was observed in the remaining tumor-affected mice. These data demonstrate that, by enhancing E7 yield, it is possible to improve the anti-cancer activity of the plant-based experimental vaccine and open the way for a large-scale production of the E7 protein which could be purified or used as ‘in planta’ formulation, also suitable for oral therapeutic vaccination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erika Boulant ◽  
Emmanuelle Cambon ◽  
Julia Vergalli ◽  
Rémi Bernard ◽  
Fabienne Neulat-Ripoll ◽  
...  

AbstractProducing industrially significant compounds with more environmentally friendly represents a challenging task. The large-scale production of an exogenous molecule in a host microfactory can quickly cause toxic effects, forcing the cell to inhibit production to survive. The key point to counter these toxic effects is to promote a gain of tolerance in the host, for instance, by inducing a constant flux of the neo-synthetized compound out of the producing cells. Efflux pumps are membrane proteins that constitute the most powerful mechanism to release molecules out of cells. We propose here a new biological model, Deinococcus geothermalis, organism known for its ability to survive hostile environment; with the aim of coupling the promising industrial potential of this species with that of heterologous efflux pumps to promote engineering tolerance. In this study, clones of D. geothermalis containing various genes encoding chromosomal heterologous efflux pumps were generated. Resistant recombinants were selected using antibiotic susceptibility tests to screen promising candidates. We then developed a method to determine the efflux efficiency of the best candidate, which contains the gene encoding the MdfA of Salmonella enterica serovar Choleraesuis. We observe 1.6 times more compound in the external medium of the hit recombinant than that of the WT at early incubation time. The data presented here will contribute to better understanding of the parameters required for efficient production in D. geothermalis.


Sign in / Sign up

Export Citation Format

Share Document