scholarly journals Detection and Replication of Moku Virus in Honey Bees and Social Wasps

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 607
Author(s):  
Andrea Highfield ◽  
Jessica Kevill ◽  
Gideon Mordecai ◽  
Jade Hunt ◽  
Summer Henderson ◽  
...  

Transmission of honey bee viruses to other insects, and vice versa, has previously been reported and the true ecological importance of this phenomenon is still being realized. Members of the family Vespidae interact with honey bees via predation or through the robbing of brood or honey from colonies, and these activities could result in virus transfer. In this study we screened Vespa velutina and Vespa crabro collected from Europe and China and also honey bees and Vespula vulgaris from the UK for Moku virus (MV), an Iflavirus first discovered in the predatory social wasp Vespula pensylvanica in Hawaii. MV was found in 71% of Vespula vulgaris screened and was also detected in UK Vespa crabro. Only seven percent of Vespa velutina individuals screened were MV-positive and these were exclusively samples from Jersey. Of 69 honey bee colonies screened, 43% tested positive for MV. MV replication was confirmed in Apis mellifera and Vespidae species, being most frequently detected in Vespula vulgaris. MV sequences from the UK were most similar to MV from Vespula pensylvanica compared to MV from Vespa velutina in Belgium. The implications of the transfer of viruses between the Vespidae and honey bees are discussed.

2021 ◽  
Vol 8 (5) ◽  
pp. 210472
Author(s):  
Jyrki Torniainen ◽  
Atte Komonen

The social vespid wasps are common insect predators and several species behave in unison in the same biotopes. It is commonly accepted that social wasps are mainly opportunistic generalist predators without differences in prey selection and hence they compete for the same food resources. Trophic positions of six vespid wasp species and their potential prey from four sites in Finland and one in the UK were evaluated using carbon and nitrogen stable isotopes (δ 13 C and δ 15 N). The difference in isotope values indicated different trophic positions among species. In general, Dolichovespula spp. showed higher δ 15 N values than Vespula spp., which suggests that Dolichovespula forage on higher trophic levels. Dolichovespula media (Retzius, 1783) showed the highest δ 15 N values, whereas Vespula vulgaris showed the lowest. Dolichovespula media partly expresses apex predator-like δ 15 N values, whereas Vespula species tend to forage on primary consumers. The largest species Vespa crabro (Linnaeus, 1758) showed also similar δ 15 N values as Vespula spp. However, δ 13 C and δ 15 N values of V. vulgaris workers varied slightly during the season. This study offers novel insights about the trophic segregation in the social wasp community, suggesting specialization in diet resource utilization, especially between Dolichovespula and Vespula .


Author(s):  
J. L. Kevill ◽  
K. C. Stainton ◽  
D. C. Schroeder ◽  
S. J. Martin

AbstractDeformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.


2018 ◽  
Author(s):  
Tim Regan ◽  
Mark W. Barnett ◽  
Dominik R. Laetsch ◽  
Stephen J. Bush ◽  
David Wragg ◽  
...  

AbstractThe European honey bee (Apis mellifera) plays a major role in pollination and food production, but is under threat from emerging pathogens and agro-environmental insults. As with other organisms, honey bee health is a complex product of environment, host genetics and associated microbes (commensal, opportunistic and pathogenic). Improved understanding of bee genetics and their molecular ecology can help manage modern challenges to bee health and production. Sampling bee and cobiont genomes, we characterised the metagenome of 19 honey bee colonies across Britain. Low heterozygosity was observed in bees from many Scottish colonies, sharing high similarity to the native dark bee, A. mellifera mellifera. Apiaries exhibited high diversity in the composition and relative abundance of individual microbiome taxa. Most non-bee sequences derived from known honey bee commensal bacteria or known pathogens, e.g. Lotmaria passim (Trypanosomatidae), and Nosema spp. (Microsporidia). However, DNA was also detected from numerous additional bacterial, plant (food source), protozoan and metazoan organisms. To classify sequences from cobionts lacking genomic information, we developed a novel network analysis approach clustering orphan contigs, allowing the identification of a pathogenic gregarine. Our analyses demonstrate the power of high-throughput, directed metagenomics in agroecosystems identifying potential threats to honey bees present in their microbiota.


2019 ◽  
Author(s):  
Mert Kükrer

The honey bee (Apis mellifera L.) is a globally significant species of apparent economic and ecological importance. Recent reports from Spain, Italy and Greece point to an intense admixture of honey bee populations signified by a loss of population structure. This is mostly attributed to migratory beekeeping practices and replacement of queens or colonies with commercial ones that are usually from non-native races or hybrids of different subspecies. These two practices are also heavily carried out in parts of Turkey where almost three-quarters of the 6 million colonies are transferred seasonally from one region to other.Past research using microsatellite and RAPD markers, mtDNA, allozymes and geometric morphometry revealed the presence of five different subspecies of honey bees (meda, syriaca,caucasica, anatoliaca and an ecotype from Carniolan subspecies group) inTurkey. Here, we carried out an analysis of population structure of Turkish honeybees sampled from six different regions (n = 250) during the period 2010-2012. A total of 29 microsatellite markers were used in four multiplex reactions. The results show that population structure is preserved in general although there are signs of gene flow between the clusters.Overall FST between stationary colonies was calculated as 0,067. For migratory colonies the value was 0,015 and for all the 250 samples the value was 0,047. Four different clusters corresponding to geographical distributions of four subspecies were revealed in structure analysis. The differentiation between the clusters was also apparent in PCA and FCA as well as phylogenetic trees constructed based on genetic distances.The genetic impact of migratory beekeeping was demonstrated for the first time based on a comparison of assignment probabilities of individuals from migratory and stationary colonies to their geographic populations. Another comparison between regions that are either open to migratory beekeeping or closed let us to evaluate the status of isolated regions and showed the importance of establishing such regions. The effects of queen and colony trade were revealed by the presence of introgression from the highly commercial Caucasian bees. Our findings confirm the previously observed high levels geographically structured genetic diversity in honey bees of Turkey and emphasize the need to develop policies to maintain this diversity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eleanor P. Jones ◽  
Chris Conyers ◽  
Victoria Tomkies ◽  
Nigel Semmence ◽  
David Fouracre ◽  
...  

Abstract Vespa velutina nigrithorax is an invasive species of hornet accidentally introduced into Europe in 2004. It feeds on invertebrates, including honey bees, and represents a threat to European apiculture. In 2016, the first nest of this hornet was detected and destroyed on mainland UK. A further 8 nests were discovered between 2016 and 2019. Nest dissection was performed on all nests together with microsatellite analyses of different life stages found in the nests to address the reproductive output and success of nests found in the UK. None of the nests had produced the next generation of queens. Follow-up monitoring in those regions detected no new nests in the following years. Diploid males were found in many UK nests, while microsatellite analysis showed that nests had low genetic diversity and the majority of queens had mated with one or two males. All UK nests derived from the European zone of secondary colonisation, rather than from the native range of the species. None of the nests discovered so far have been direct offspring of another UK nest. The evidence suggests that these nests were separate incursions from a continental population rather than belonging to a single established UK population of this pest.


2020 ◽  
Author(s):  
Luca Carisio ◽  
Jacopo Cerri ◽  
Simone Lioy ◽  
Ettore Bianchi ◽  
Sandro Bertolino ◽  
...  

Alien species invasion could lead to the replacement of native species with similar ecological requirements. Vespa velutina is an invasive hornet recently established in Europe, that is raising concern due to the associated economic and ecological impacts toward managed and wild pollinators besides to the potential competition and replacement of native wasp species. This led to the inclusion of V. velutina in the European list of Invasive Alien Species of Union concern. Nevertheless, V. velutina impacts on the native wasp community is poorly understood. We analysed the influence of V. velutina abundance on the European hornet Vespa crabro in a four-year invaded area in Italy. Moreover, we assessed the impacts of its presence on V. crabro, Vespula vulgaris and Vespula germanica, by comparing the invaded area with an uninvaded one. A Bayesian Generalized Linear Model, implemented to control some relevant environmental confounders, indicate that the relationship between Vespa species was positive at low abundances, while for high values of V. velutina the two species did not covary anymore. The distribution of V. crabro, V. vulgaris and V. germanica showed a considerable overlap between the invaded and uninvaded areas. Overall, the results bring to the conclusion that native Vespidae have probably avoided or minimised a competition pressure, and therefore the presence of V. velutina has not led to an evident replacement of V. crabro and Vespula species. This provides reassurance regarding the conservation status of native European Vespidae following V. velutina invasion.


2009 ◽  
Vol 24 ◽  
pp. 89-95 ◽  
Author(s):  
Nar Bahadur Ranabhat ◽  
Ananda Shova Tamrakar

A study was conducted at the southern belt of Kaski District during August 2003 to July 2004 to identify natural enemies of honey bee Apis cerana Fab. and associated problems in beekeeping. Four species of wasps viz: Vespa velutina, V. bicolor, V. tropica and V. basalis were observed preying on Apis cerana. Six species of Ants were collected from hive attacking honey bees viz Componatus sp, Sima sp, Monomorium sp, Myrmica sp and two unidentified. Four species of spider viz Palatar indicus, Ariope areuta and the other two belonging to family Theridae and Araneidae were collected from the hives. Two species of Birds, Green bee- Eater and Drongo; One species of Beetle, One Chalcid (Antrocephalus sp) were identified.The disease Thaisac brood, Mite, Wax Moth and pesticide damage, deforestation, absconding of bees, lack of technical knowledge were important problems for apiculture in study area.  Key words: Apis cerana F; Enemies;  Pesticide;  Absconding;  Kaski  Journal of Natural History MuseumVol. 24, 2009Page: 89-95 


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


2021 ◽  
Vol 11 (14) ◽  
pp. 6481
Author(s):  
Marianna Martinello ◽  
Chiara Manzinello ◽  
Nicoletta Dainese ◽  
Ilenia Giuliato ◽  
Albino Gallina ◽  
...  

Member states of the European Union are required to ensure the initiation of monitoring programs to verify honey bee exposure to pesticides, where and as appropriate. Based on 620 samples of dead honey bees—42 of pollen, 183 of honey and 32 of vegetables—we highlighted the presence, as analyzed by liquid and gas chromatography coupled with tandem mass spectrometric detection, of many active substances, mainly tau-fluvalinate, piperonyl butoxide, chlorpyrifos and chlorpyrifos-methyl, permethrin and imidacloprid. Among the active substances found in analyzed matrices linked to honey bee killing incidents, 38 belong to hazard classes I and II, as methiocarb, methomyl, chlorpyrifos, cypermethrin and permethrin, thus representing a potential risk for human health. We have shown that, at different times between 2015 and 2020, during implementation of the Italian national guidelines for managing reports of bee colony mortality or depopulation associated with pesticide use, pesticide pollution events occurred that could raise concern for human health. Competent authorities could, as part of a One Health approach, exploit the information provided by existing reporting programs on honey bees and their products, in view of the close correlation to human health, animal health and ecosystem health.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


Sign in / Sign up

Export Citation Format

Share Document