scholarly journals Next Generation Cancer Vaccines—Make It Personal!

Vaccines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 52 ◽  
Author(s):  
Angelika Terbuch ◽  
Juanita Lopez

Dramatic success in cancer immunotherapy has been achieved over the last decade with the introduction of checkpoint inhibitors, leading to response rates higher than with chemotherapy in certain cancer types. These responses are often restricted to cancers that have a high mutational burden and show pre-existing T-cell infiltrates. Despite extensive efforts, therapeutic vaccines have been mostly unsuccessful in the clinic. With the introduction of next generation sequencing, the identification of individual mutations is possible, enabling the production of personalized cancer vaccines. Combining immune check point inhibitors to overcome the immunosuppressive microenvironment and personalized cancer vaccines for directing the host immune system against the chosen antigens might be a promising treatment strategy.

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 668
Author(s):  
Howard Donninger ◽  
Chi Li ◽  
John W. Eaton ◽  
Kavitha Yaddanapudi

The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanie Tietze ◽  
Susanne Michen ◽  
Gabriele Schackert ◽  
Achim Temme

Abstract Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor endowed with a dismal prognosis. Nowadays, immunotherapy in a particular immune checkpoint blockade and therapeutic vaccines are being extensively pursued. Yet, several characteristics of GBM may impact such immunotherapeutic approaches. This includes tumor heterogeneity, the relatively low mutational load of primary GBM, insufficient delivery of antibodies to tumor parenchyma and the unique immunosuppressive microenvironment of GBM. Moreover, standard treatment of GBM, comprising temozolomide chemotherapy, radiotherapy and in most instances the application of glucocorticoids for management of brain edema, results in a further increased immunosuppression. This review will provide a brief introduction to the principles of vaccine-based immunotherapy and give an overview of the current clinical studies, which employed immune checkpoint inhibitors, oncolytic viruses-based vaccination, cell-based and peptide-based vaccines. Recent experiences as well as the latest developments are reviewed. Overcoming obstacles, which limit the induction and long-term immune response against GBM when using vaccination approaches, are necessary for the implementation of effective immunotherapy of GBM.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 623
Author(s):  
Brigida Anna Maiorano ◽  
Giovanni Schinzari ◽  
Davide Ciardiello ◽  
Maria Grazia Rodriquenz ◽  
Antonio Cisternino ◽  
...  

Background: In the last years, many new treatment options have widened the therapeutic scenario of genitourinary malignancies. Immunotherapy has shown efficacy, especially in the urothelial and renal cell carcinomas, with no particular relevance in prostate cancer. However, despite the use of immune checkpoint inhibitors, there is still high morbidity and mortality among these neoplasms. Cancer vaccines represent another way to activate the immune system. We sought to summarize the most recent advances in vaccine therapy for genitourinary malignancies with this review. Methods: We searched PubMed, Embase and Cochrane Database for clinical trials conducted in the last ten years, focusing on cancer vaccines in the prostate, urothelial and renal cancer. Results: Various therapeutic vaccines, including DNA-based, RNA-based, peptide-based, dendritic cells, viral vectors and modified tumor cells, have been demonstrated to induce specific immune responses in a variable percentage of patients. However, these responses rarely corresponded to significant survival improvements. Conclusions: Further preclinical and clinical studies will improve the knowledge about cancer vaccines in genitourinary malignancies to optimize dosage, select targets with a driver role for tumor development and growth, and finally overcome resistance mechanisms. Combination strategies represent possibly more effective and long-lasting treatments.


2021 ◽  
Vol 22 (15) ◽  
pp. 8035
Author(s):  
Chang Gon Kim ◽  
Yun Beom Sang ◽  
Ji Hyun Lee ◽  
Hong Jae Chon

Therapeutic cancer vaccines have become increasingly qualified for use in personalized cancer immunotherapy. A deeper understanding of tumor immunology and novel antigen delivery technologies has assisted in optimizing vaccine design. Therapeutic cancer vaccines aim to establish long-lasting immunological memory against tumor cells, thereby leading to effective tumor regression and minimizing non-specific or adverse events. However, due to several resistance mechanisms, significant challenges remain to be solved in order to achieve these goals. In this review, we describe our current understanding with respect to the use of the antigen repertoire in vaccine platform development. We also summarize various intrinsic and extrinsic resistance mechanisms behind the failure of cancer vaccine development in the past. Finally, we suggest a strategy that combines immune checkpoint inhibitors to enhance the efficacy of cancer vaccines.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juan-Yan Liao ◽  
Shuang Zhang

Cancer immunotherapy can induce sustained responses in patients with cancers in a broad range of tissues, however, these treatments require the optimized combined therapeutic strategies. Despite immune checkpoint inhibitors (ICIs) have lasting clinical benefit, researchers are trying to combine them with other treatment modalities, and among them the combination with personalized cancer vaccines is attractive. Neoantigens, arising from mutations in cancer cells, can elicit strong immune response without central tolerance and out-target effects, which is a truly personalized method. Growing studies show that the combination can elevate the antitumor efficacy with acceptable safety and minimal additional toxicity compared with single agent vaccine or ICI. Herein, we have searched these preclinical and clinical trials and summarized safety and efficacy of personalized cancer vaccines combined with ICIs in several malignancies. Meanwhile, we discuss the rationale of the combination and future challenges.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenhui Liu ◽  
Ying Wang ◽  
Jianquan Luo ◽  
Mouze Liu ◽  
Zhiying Luo

Cancer is an important threat to public health because of its high morbidity and mortality. In recent decades, immune checkpoint inhibitors (ICIs) have ushered a new therapeutic era in clinical oncology. The rapid development of immune checkpoint therapy is due to its inspiring clinical efficacy in a group of cancer types. Metformin, an effective agent for the management of type 2 diabetes mellitus (T2DM), has shown beneficial effects on cancer prevention and cancer treatment. Emerging studies have suggested that metformin in combination with ICI treatment could improve the anticancer effects of ICIs. Hence, we conducted a review to summarize the effects of metformin on ICI therapy. We also review the pleiotropic mechanisms of metformin combined with ICIs in cancer therapy, including its direct and indirect effects on the host immune system.


2017 ◽  
Author(s):  
Alexander Rubinsteyn ◽  
Isaac Hodes ◽  
Julia Kodysh ◽  
Jeffrey Hammerbacher

AbstractTherapeutic vaccines targeting mutant tumor antigens (“neoantigens”) are an increasingly popular form of personalized cancer immunotherapy. Vaxrank is a computational tool for selecting neoantigen vaccine peptides from tumor mutations, tumor RNA data, and patient HLA type. Vaxrank is freely available at www.github.com/openvax/vaxrank under the Apache 2.0 open source license and can also be installed from the Python Package Index.


2019 ◽  
Vol 27 (S2) ◽  
Author(s):  
K. Esfahani ◽  
L. Roudaia ◽  
N. Buhlaiga ◽  
S.V. Del Rincon ◽  
N. Papneja ◽  
...  

Compared with previous standards of care (including chemotherapy, radiotherapy, and surgery), cancer immunotherapy has brought significant improvements for patients in terms of survival and quality of life. Immunotherapy has now firmly established itself as a novel pillar of cancer care, from the metastatic stage to the adjuvant and neoadjuvant settings in numerous cancer types. In this review article, we highlight how the history of cancer immunotherapy paved the way for discoveries that are now part of the standard of care. We also highlight the current pitfalls and limitations of cancer checkpoint immunotherapy and how novel research in the fields of personalized cancer vaccines, autoimmunity, the microbiome, the tumour microenvironment, and metabolomics is aiming to solve those challenges.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1396
Author(s):  
Tahseen H. Nasti ◽  
Christiane S. Eberhardt

The use of immune checkpoint inhibitors (ICI) has substantially increased the overall survival of cancer patients and has revolutionized the therapeutic situation in oncology. However, not all patients and cancer types respond to ICI, or become resistant over time. Combining ICIs with therapeutic cancer vaccines is a promising option as vaccination may help to overcome resistance to immunotherapies while immunotherapies may increase immune responses to the particular cancer vaccine by reinvigorating exhausted T cells. Thus, it would be possible to reprogram a response with appropriate vaccines, using a particular cancer antigen and a corresponding ICI. Target populations include currently untreatable cancer patients or those who receive treatment regimens with high risk of serious side effects. In addition, with the increased use of ICI in clinical practice, questions arise regarding safety and efficacy of administration of conventional vaccines, such as influenza or COVID-19 vaccines, during active ICI treatment. This review discusses the main principles of prophylactic and therapeutic cancer vaccines, the potential impact on combining therapeutic cancer vaccines with ICI, and briefly summarizes the current knowledge of safety and effectiveness of influenza and COVID-19 vaccines in ICI-treated patients.


2021 ◽  
Author(s):  
Zhentao Yu ◽  
Yudi Xu ◽  
Haochen Yao ◽  
Xinghui Si ◽  
Guofeng Ji ◽  
...  

Cancer vaccines artificially stimulate the immune system against cancer and are considered the most promising treatment of cancer. However, current progress in vaccine research against cancer is still limited and...


Sign in / Sign up

Export Citation Format

Share Document