scholarly journals Essential Role of Host Double-Stranded DNA Released from Dying Cells by Cationic Liposomes for Mucosal Adjuvanticity

Vaccines ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Rui Tada ◽  
Akihiro Ohshima ◽  
Yuya Tanazawa ◽  
Akari Ohmi ◽  
Saeko Takahashi ◽  
...  

Infectious disease remains a substantial cause of death. To overcome this issue, mucosal vaccine systems are considered to be a promising strategy. Yet, none are approved for clinical use, except for live-attenuated mucosal vaccines, mainly owing to the lack of effective and safe systems to induce antigen-specific immune responses in the mucosal compartment. We have reported that intranasal vaccination of an antigenic protein, with cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl], induced antigen-specific mucosal and systemic antibody responses in mice. However, precise molecular mechanism(s) underlying the mucosal adjuvant effects of cationic liposomes remain to be uncovered. Here, we show that a host double-stranded DNA (dsDNA), released at the site of cationic liposome injection, plays an essential role for the mucosal adjuvanticity of the cationic liposome. Namely, we found that nasal administration of the cationic liposomes induced localized cell death, at the site of injection, resulting in extracellular leakage of host dsDNA. Additionally, in vivo DNase I treatment markedly impaired OVA-specific mucosal and systemic antibody production exerted by cationic liposomes. Our report reveals that host dsDNA, released from local dying cells, acts as a damage-associated molecular pattern that mediates the mucosal adjuvant activity of cationic liposomes.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1237
Author(s):  
Signe Tandrup Schmidt ◽  
Dennis Christensen ◽  
Yvonne Perrie

Subunit vaccines require particulate adjuvants to induce the desired immune responses. Pre-clinical manufacturing methods of adjuvants are often batch dependent, which complicates scale-up for large-scale good manufacturing practice (GMP) production. The cationic liposomal adjuvant CAF09b, composed of dioctadecyldimethylammonium bromide (DDA), monomycoloyl glycerol analogue 1 (MMG) and polyinosinic:polycytidylic acid [poly(I:C)], is currently being clinically evaluated in therapeutic cancer vaccines. Microfluidics is a promising new method for large-scale manufacturing of particle-based medicals, which is scalable from laboratory to GMP production, and a protocol for production of CAF09b by this method was therefore validated. The influence of the manufacture parameters [Ethanol] (20–40% v/v), [Lipid] (DDA and MMG, 6–12 mg/mL) and dimethyl sulfoxide [DMSO] (0–10% v/v) on the resulting particle size, colloidal stability and adsorption of poly(I:C) was evaluated in a design-of-experiments study. [Ethanol] and [DMSO] affected the resulting particle sizes, while [Lipid] and [DMSO] affected the colloidal stability. In all samples, poly(I:C) was encapsulated within the liposomes. At [Ethanol] 30% v/v, most formulations were stable at 21 days of manufacture with particle sizes <100 nm. An in vivo comparison in mice of the immunogenicity to the cervical cancer peptide antigen HPV-16 E7 adjuvanted with CAF09b prepared by lipid film rehydration or microfluidics showed no difference between the formulations, indicating adjuvant activity is intact. Thus, it is possible to prepare suitable formulations of CAF09b by microfluidics.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Dool-Ri Oh ◽  
Hu Won Kang ◽  
Jong-Ro Kim ◽  
Sunoh Kim ◽  
In-Kyu Park ◽  
...  

Toll-like receptor (TLR) ligands are being developed for use as vaccine adjuvants and as immunomodulators because of their ability to stimulate innate and adaptive immune responses. Flagellin, a TLR5 ligand, was reported to show potent mucosal vaccine adjuvant activity. To identify ligands that potentiate the adjuvant activity of flagellin, we screened a plant library using HEK293T cells transiently cotransfected with phTLR5 and pNF-κB-SEAP plasmids. The 90% EtOH extract fromCroton tigliumshowed significant NF-κB transactivation in a TLR5-independent manner along with the increase of a flagellin activity. We have studied to characterize an active component fromCroton tigliumand to elucidate the action mechanisms. Phorbol 12-myristate 13-acetate (PMA) was isolated as an active component ofCroton tigliumby activity-guided fractionation, column chromatography, HPLC, NMR, and MS. PMA at a range of nM induced PKC-dependent NF-κB activation and IL-8 production in both TLR5− and TLR5+ assay systems. In in vivo mouse vaccination model, PMA induced antigen-specific IgG and IgA antibody responses and increased IL-12 production corresponding to T cell responses in spleen lymphocytes. These results suggest that PMA would serve as an efficacious mucosal vaccine adjuvant.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Byoung-Shik Shim ◽  
In Su Cheon ◽  
Eugene Lee ◽  
Sung-Moo Park ◽  
Youngjoo Choi ◽  
...  

Potential use of cholera toxin (CT) as a mucosal vaccine adjuvant has been documented in a variety of animal models. However, native CT is highly toxic to be used as a mucosal adjuvant in humans. Here, we demonstrate a new approach to generate a mucosal adjuvant by replacing the B subunit of CT with HIV-1 Tat protein transduction domain (PTD), which efficiently delivers fusion proteins into the cell cytoplasm by unspecific binding to cell surface. We compared the adjuvanticity and toxicity of Tat PTD-CTA1-Tat PTD (TCTA1T) with those of CT. Our results indicate that intranasal (i.n.) delivery of ovalbumin (OVA) with TCTA1T significantly augments the OVA-specific systemic and mucosal antibody responses to levels comparable to those seen with CT adjuvant. Moreover,in vivocytotoxic T lymphocyte activity elicited by TCTA1T was significantly higher than that elicited by a mutant TCTA1T (TmCTA1T) lacking ADP-ribosyltransferase function. In addition, coadministration of influenza M2 protein with TCTA1T conferred near complete protection against lethal influenza virus challenge. Importantly, TCTA1T, in contrast to CT, did not induce serum IgG antibody responses to itself and was shown to be nontoxic. These results suggest that TCTA1T may be a safe and effective adjuvant when given by mucosal routes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Hisako Ibaraki ◽  
Akihiro Takeda ◽  
Naoki Arima ◽  
Naruhiro Hatakeyama ◽  
Yuuki Takashima ◽  
...  

Nanocarriers such as liposomes have been attracting attention as novel therapeutic methods for inflammatory autoimmune diseases such as rheumatoid arthritis and ulcerative colitis. The physicochemical properties of intravenously administered nanomedicines enable them to target inflamed tissues passively. However, few studies have attempted to determine the influences of nanoparticle surface characteristics on inflammation site accumulation. Here, we aimed to study the effects of polyethylene glycol (PEG) modification and surface charge on liposome ability to accumulate in inflammatory sites and be uptake by macrophages. Four different liposome samples with different PEG modification and surface charge were prepared. Liposome accumulation in the inflammation sites of arthritis and ulcerative colitis model mice was evaluated by using in vivo imaging. There was greater PEG-modified than unmodified liposome accumulation at all inflammation sites. There was greater anionic than cationic liposome accumulation at all inflammation sites. The order in which inflammation site accumulation was confirmed was PEG-anionic > PEG-cationic > anionic > cationic. PEG-anionic liposomes had ~2.5× higher fluorescence intensity than PEG-cationic liposomes, and the PEG-liposomes had ~2× higher fluorescence intensity than non-PEG liposomes. All liposomes have not accumulated at the inflammation sites in healthy mice. Furthermore, cationic liposomes were taken up to ~10× greater extent by RAW264.7 murine macrophages. Thus, PEG-cationic liposomes that have the ability to accumulate in inflammatory sites via intravenous administration and to be taken up by macrophages could be useful.


2021 ◽  
Author(s):  
Daniela Araújo ◽  
Ricardo Gaspar ◽  
Dalila Mil-Homens ◽  
Mariana Henrqiques ◽  
Bruno Silva ◽  
...  

Abstract Background: The effective protection and delivery of antisense oligomers to its site of action is a challenge without an optimal strategy. Some of the most promising approaches encompass the complexation of nucleic acids, which are anionic, with liposomes of fixed or ionizable cationic charge. Thus, the main purpose of this work was to study the complexation of cationic liposomes with anti-EFG1 2’OMe oligomers and evaluate the complex efficacy to control Candida albicans filamentation in vitro and in vivo using a Galleria mellonella model. Results: To accomplish this, cationic 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) was mixed with three different neutral lipids dioleoylphosphocholine (DOPC), dioleoylphosphatidylethanolamine (DOPE) and monoolein (MO) and used as delivery vectors. Fluorescence Cross Correlation Spectroscopy measurements revealed a high association between antisense oligomers (ASO) and cationic liposomes confirming the formation of lipoplexes. In vitro, all cationic liposome-ASO complexes were able to release the anti-EFG1 2’OMe oligomers and consequently inhibit C. albicans filamentation up to 60 % after 72 h. In vivo, from all formulations the DOTAP/DOPC 80/20 ρchg=3 formulation proved to be the most effective, enhancing the G. mellonella survival by 40% within 48 h and by 25% after 72 h of infection.Conclusions: In this sense, our findings show that DOTAP-based lipoplexes are very good candidates for nano-carriers of anti-EFG1 2’OMe oligomers.


1994 ◽  
Vol 77 (1) ◽  
pp. 415-419 ◽  
Author(s):  
A. E. Canonico ◽  
J. D. Plitman ◽  
J. T. Conary ◽  
B. O. Meyrick ◽  
K. L. Brigham

The safety aspects of human gene therapy are of paramount importance in developing an ideal system for gene transfer. Lipofection using DNA in the form of a plasmid has been shown to successfully transfect the lungs when administered either intravenously or by aerosol. We have shown that repeated intravenous or aerosol administration of a plasmid containing the recombinant human alpha 1-antitrypsin gene and a cytomegalovirus promoter complexed to cationic liposomes results in no adverse effects on pulmonary histology, lung compliance, lung resistance, or alveolar-arterial oxygen gradient. Immunohistochemistry and Western blot analysis confirm successful gene transfer using this delivery system. We conclude that plasmids complexed to cationic liposomes may be a safe and efficacious delivery system for in vivo gene transfer to the lungs. Using this delivery system, in vivo gene therapy to the lungs can be achieved by either intravenous or aerosol administration of the transgene.


2005 ◽  
Vol 73 (10) ◽  
pp. 6763-6770 ◽  
Author(s):  
Oscar Pino ◽  
Michael Martin ◽  
Suzanne M. Michalek

ABSTRACT An expanding area of interest is the utilization of microbe-based components to augment mucosal and systemic immune responses to target antigens. Thus, the aim of the present study was to assess if the flagellin component FljB from Salmonella enterica serovar Typhimurium could act as a mucosal adjuvant and then to determine the cellular mechanism(s) by which FljB mediates its adjuvant properties. To determine if FljB could act as a mucosal adjuvant, mice were immunized by the intranasal (i.n.) route with antigen alone or in conjunction with FljB. Additionally, we assessed how FljB affected the levels of the costimulatory molecules B7-1 and B7-2 on dendritic cells by flow cytometry and determined the functional role these costimulatory molecules played in the adjuvant properties of FljB in vivo. Mice immunized by the i.n. route with antigen and FljB exhibited significantly elevated levels of mucosal and systemic antibody and CD4+-T-cell responses compared to mice given antigen only. Stimulation of dendritic cells in vitro with FljB resulted in a pronounced increase in the surface expression of B7-1 and B7-2. The percentage of dendritic cells expressing B7-2 but not B7-1 increased significantly when stimulated with FljB over a concentration range of 10 to 10,000 ng/ml. Immunization of wild-type and B7-1, B7-2, and B7-1/2 knockout mice by the i.n. route revealed that the ability of FljB to increase B7-2 expression is largely responsible for its adjuvant effect in vivo. These findings demonstrate that FljB can act as an effective mucosal adjuvant and that its ability to enhance the level of B7-2 expression is predominantly responsible for its adjuvant properties.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Steven M Blaauboer ◽  
Samira Mansouri ◽  
Heidi R Tucker ◽  
Hatti L Wang ◽  
Vincent D Gabrielle ◽  
...  

Effective mucosal adjuvants enhance the magnitude and quality of the vaccine response. Cyclic di-GMP (CDG) is a promising mucosal vaccine adjuvant. However, its in vivo mechanisms are unclear. Here, we showed, in mice, that CDG elicits stronger Ab and TH responses than the mammalian 2′3′-cyclic GMP-AMP (cGAMP), and generated better protection against Streptococcus pneumoniae infection than 2′3′-cGAMP adjuvanted vaccine. We identified two in vivo mechanisms of CDG. First, intranasally administered CDG greatly enhances Ag uptake, including pinocytosis and receptor-mediated endocytosis in vivo. The enhancement depends on MPYS (STING, MITA) expression in CD11C+ cells. Second, we found that CDG selectively activated pinocytosis-efficient-DCs, leading to TH polarizing cytokines IL-12p70, IFNγ, IL-5, IL-13, IL-23, and IL-6 production in vivo. Notably, CDG induces IFNλ, but not IFNβ, in vivo. Our study revealed previously unrecognized in vivo functions of MPYS and advanced our understanding of CDG as a mucosal vaccine adjuvant.


Sign in / Sign up

Export Citation Format

Share Document