scholarly journals Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1490
Author(s):  
Majed Ghattas ◽  
Garima Dwivedi ◽  
Marc Lavertu ◽  
Mohamad-Gabriel Alameh

Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, virus-like particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.

2013 ◽  
Vol 19 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Dumindu Witharana ◽  
Gwen Adshead

SummaryPsychological treatments in secure settings have traditionally been based on psychodynamic and cognitive–behavioural approaches. Recent developments, supported by an emerging evidence base, have generated a significant amount of interest in mindfulness-based psychological therapies and their utility in diverse areas of mental healthcare. In this article we analyse the current evidence base and describe possible mechanisms of action of mindfulness-based psychological approaches. On the basis of the evidence, we advocate a cautious but positive approach to using mindfulness-based interventions in secure services.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 283
Author(s):  
Eyal Seroussi

Determination of the relative copy numbers of mixed molecular species in nucleic acid samples is often the objective of biological experiments, including Single-Nucleotide Polymorphism (SNP), indel and gene copy-number characterization, and quantification of CRISPR-Cas9 base editing, cytosine methylation, and RNA editing. Standard dye-terminator chromatograms are a widely accessible, cost-effective information source from which copy-number proportions can be inferred. However, the rate of incorporation of dye terminators is dependent on the dye type, the adjacent sequence string, and the secondary structure of the sequenced strand. These variable rates complicate inferences and have driven scientists to resort to complex and costly quantification methods. Because these complex methods introduce their own biases, researchers are rethinking whether rectifying distortions in sequencing trace files and using direct sequencing for quantification will enable comparable accurate assessment. Indeed, recent developments in software tools (e.g., TIDE, ICE, EditR, BEEP and BEAT) indicate that quantification based on direct Sanger sequencing is gaining in scientific acceptance. This commentary reviews the common obstacles in quantification and the latest insights and developments relevant to estimating copy-number proportions based on direct Sanger sequencing, concluding that bidirectional sequencing and sophisticated base calling are the keys to identifying and avoiding sequence distortions.


2021 ◽  
Vol 13 (4) ◽  
pp. 2031
Author(s):  
Fabio Grandi ◽  
Riccardo Karim Khamaisi ◽  
Margherita Peruzzini ◽  
Roberto Raffaeli ◽  
Marcello Pellicciari

Product and process digitalization is pervading numerous areas in the industry to improve quality and reduce costs. In particular, digital models enable virtual simulations to predict product and process performances, as well as to generate digital contents to improve the general workflow. Digital models can also contain additional contents (e.g., model-based design (MBD)) to provide online and on-time information about process operations and management, as well as to support operator activities. The recent developments in augmented reality (AR) offer new specific interfaces to promote the great diffusion of digital contents into industrial processes, thanks to flexible and robust applications, as well as cost-effective devices. However, the impact of AR applications on sustainability is still poorly explored in research. In this direction, this paper proposed an innovative approach to exploit MBD and introduce AR interfaces in the industry to support human intensive processes. Indeed, in those processes, the human contribution is still crucial to guaranteeing the expected product quality (e.g., quality inspection). The paper also analyzed how this new concept can benefit sustainability and define a set of metrics to assess the positive impact on sustainability, focusing on social aspects.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2940
Author(s):  
Antonella Curulli

Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.


2011 ◽  
Vol 4 ◽  
pp. CMWH.S5332
Author(s):  
Anita L. Nelson

The ParaGard Copper T 380A intrauterine device (CuT380A) provides reversible contraception that is as effective as sterilization for up to 20 years. The CuT380A is a mainstream, first-line contraceptive option for most healthy women, including nulligravid women, as well as many women who have serious medical problems. Because it is the most cost-effective method of birth control, the CuT380A is the preferred IUD, except for women who desire lighter or no menstrual blood loss. Surveys reveal that 95% of US CuT380A users are “very” or “somewhat” satisfied with their method. This article describes current candidates for IUD use, discusses the mechanisms of action of the CuT380A, provides guidance to reduce barriers to IUD access, suggests counseling points for patients, and outlines techniques to reduce the risks and side effects that can be associated with use of the CuT380A.


Author(s):  
Karl R. Haapala ◽  
Fu Zhao ◽  
Jaime Camelio ◽  
John W. Sutherland ◽  
Steven J. Skerlos ◽  
...  

Sustainable manufacturing requires simultaneous consideration of economic, environmental, and social implications associated with the production and delivery of goods. Fundamentally, sustainable manufacturing relies on descriptive metrics, advanced decision-making, and public policy for implementation, evaluation, and feedback. In this paper, recent research into concepts, methods, and tools for sustainable manufacturing is explored. At the manufacturing process level, engineering research has addressed issues related to planning, development, analysis, and improvement of processes. At a manufacturing systems level, engineering research has addressed challenges relating to facility operation, production planning and scheduling, and supply chain design. Though economically vital, manufacturing processes and systems have retained the negative image of being inefficient, polluting, and dangerous. Industrial and academic researchers are re-imagining manufacturing as a source of innovation to meet society's future needs by undertaking strategic activities focused on sustainable processes and systems. Despite recent developments in decision making and process- and systems-level research, many challenges and opportunities remain. Several of these challenges relevant to manufacturing process and system research, development, implementation, and education are highlighted.


2018 ◽  
Vol 5 (4) ◽  
pp. 92 ◽  
Author(s):  
Kathryn Huyvaert ◽  
Robin Russell ◽  
Kelly Patyk ◽  
Meggan Craft ◽  
Paul Cross ◽  
...  

Diseases that affect both wild and domestic animals can be particularly difficult to prevent, predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on domestic animal producers and can present significant challenges to wildlife populations, particularly for populations of conservation concern. Few mathematical models exist that capture the complexities of these multi-host pathogens, yet the development of such models would allow us to estimate and compare the potential effectiveness of management actions for mitigating or suppressing disease in wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the challenges associated with developing models of pathogen transmission across the wildlife-livestock interface. The development of mathematical models of pathogen transmission at this interface is hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant mitigation efforts on wild and domestic animal populations; and (4) barriers to communication between sectors. To promote the development of mathematical models of transmission at this interface, we recommend further integration of modern quantitative techniques and improvement of communication among wildlife biologists, mathematical modelers, veterinary medicine professionals, producers, and other stakeholders concerned with the consequences of pathogen transmission at this important, yet poorly understood, interface.


2011 ◽  
Vol 7 (2) ◽  
pp. 147-174
Author(s):  
Steven J. Hoffman ◽  
Lorne Sossin

AbstractAdjudicative tribunals are an integral part of health system governance, yet their real-world impact remains largely unknown. Most assessments focus on internal accountability and use anecdotal methodologies; few, studies if any, empirically evaluate their external impact and use these data to test effectiveness, track performance, inform service improvements and ultimately strengthen health systems. Given that such assessments would yield important benefits and have been conducted successfully in similar settings (e.g. specialist courts), their absence is likely attributable to complexity in the health system, methodological difficulties and the legal environment within which tribunals operate. We suggest practical steps for potential evaluators to conduct empirical impact evaluations along with an evaluation matrix template featuring possible target outcomes and corresponding surrogate endpoints, performance indicators and empirical methodologies. Several system-level strategies for supporting such assessments have also been suggested for academics, health system institutions, health planners and research funders. Action is necessary to ensure that policymakers do not continue operating without evidence but can rather pursue data-driven strategies that are more likely to achieve their health system goals in a cost-effective way.


1987 ◽  
Vol 31 (11) ◽  
pp. 1261-1265 ◽  
Author(s):  
Joan M. Ryder ◽  
Richard E. Redding ◽  
Peter F. Beckschi

This study evaluated current training methodologies, particularly Instructional Systems Development (ISD), and recent developments in cognitive science to determine how training procedures should be modified to support training for tasks which require complex cognitive skills. We contend that ISD is still viable if procedures are developed for the training of cognitive skills. An important component of ISD which needs to be modified to support training of cognitive skills is the task analysis. We discuss the need for integrating efficient and cost-effective cognitive task analysis methodologies with traditional analysis methods.


Sign in / Sign up

Export Citation Format

Share Document