scholarly journals Antibacterial Activity of Honey Samples from Ukraine

2020 ◽  
Vol 7 (4) ◽  
pp. 181
Author(s):  
Giovanni Cilia ◽  
Filippo Fratini ◽  
Matilde Marchi ◽  
Simona Sagona ◽  
Barbara Turchi ◽  
...  

The employment of natural substances such as beehive products with a preventive and therapeutic purpose has been a widespread custom since ancient times. In this investigation, the antibacterial activity of 41 honey samples from different Ukraine regions has been evaluated. For each honey, melissopalynological and physico-chemical analysis were performed in order to determine botanical origin, pH, glucose and fructose contents and free acidity. So, antibacterial activity against Staphylococcusaureus CCM 4223, Listeria monocytogenes ATCC 7644, Salmonella enterica serovar Typhimurium CCM 3807 and Escherichia coli ATCC 25922 was assessed through the determination of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values by the microdilutions method. The results show that the most susceptible bacterial strain was L. monocytogenes. Its growth was inhibited at a honey concentration ranging from 0.094 to 0.188 g/mL. The most resistant bacterial strain was S. aureus. As concerns MBC values, L. monocytogenes was the most susceptible bacteria, while S. aureus was the most resistant. Helianthus spp. honeys was the most effective against all tested bacterial strains, followed by Robinia spp. and multifloral honeys. Promising results for MIC tests have been found for Brassica spp.

2016 ◽  
Vol 60 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lia M. Junie ◽  
Mihaela L. Vică ◽  
Mirel Glevitzky ◽  
Horea V. Matei

AbstractThe first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones).


2013 ◽  
Vol 10 (3) ◽  
pp. 509-524
Author(s):  
Baghdad Science Journal

Abstract: New copper(II) complexes with mixed ligand benziloxime (BOxH) and furfural-dehydeazine (FA) using classical (with and without solvent) and microwave heating methods have been prepared. The resulting complexes have been characterized using physico-chemical techniques. The study suggested that the ligands formed neutral complexes had general formulas [Cu(FA)(BOXH)(Ac)2] and [Cu(FA)(BOX)(OH)] in neutral (or acidic) and basic medium, respectively. Accordingly, hexa-coordinated mono-nuclear complexes have been investigated by this study and having distorted octahedral geometry. The effect of laser have been studied on solid ligands and solid complexes, no effect have been observed on most compounds through the results of melting point and conductivity, this means that most of the compounds were not affected by this kind of radiation. and stable. Whereas some few complexes have been slightly affected due to breaking of hydrogen bonding. The biological activity of copper salt, ligands and all the complexes have been evaluated by agar plate diffusion techniques against two human pathogenic bacterial strains: Staphylococcus aureus and Enterococcus. Copper acetate was found to have antibacterial activity. The ligand FA also has antibacterial activity against Staphylococcus aureus and Enterococcus, whereas the other ligand BOxH does not have antibacterial activity against Enterococcus. Most of the complexes were found to have antibacterial activity against Staphylococcus aureus and Enterococcus. The activity of the complexes (2,4 and 5) have been evaluated on trace of Impetigo from skin of males and females, the complexes [Cu(BOxH)(FA)(Ac)2] (2) and [Cu(BOx)(FA)(OH)] (4,5); showed significant activity against this pathogen.


Author(s):  
Elhassan Benyagoub ◽  
Nouria Nabbou ◽  
Dalila Razni ◽  
Snoussi Moghtet

Objective: The purpose of this work is to study the biological activity of Anastatica hierochuntica L., against nine bacterial strains responsible for women’s uro-genital infection (UGI).Methods: The plant was collected from Tindouf region (far southwest Algeria). In this study, we performed an evaluation of antibacterial activity of three macerates of two vegetative parts (seeds and stems) by two methods (disc and wells diffusion methods), with a description of the antibiotic resistance profile of isolated bacterial strains by antibiogram method.Results: According to the results, the antibiotic resistance profile of the tested bacterial strains showed an increased resistance against several antibiotics families. The evaluation of the antibacterial potential of macerates showed that methanolic and aqueous macerates of the seeds were more active against Gram-positive bacteria compared to Gram-negative bacteria.Conclusion: The preliminary results of this study allowed us to predict that natural substances in the plant can be considered as an important source to possess compounds with significant antibacterial properties and thus suggest their application in the pharmaceutical industry.


2005 ◽  
Vol 70 (10) ◽  
pp. 1155-1162 ◽  
Author(s):  
Jigna Parekh ◽  
Pranav Inamdhar ◽  
Rathish Nair ◽  
Shipra Baluja ◽  
Sumitra Chanda

The following Schiff bases have been synthesized: (1) 4-(2-chlorobenzylidene)amino benzoic acid JP1, (2) 4 (furan-2-ylmethylene)amino benzoic acid JP2, (3) 4-[(3-phenylallylidene)amino]benzoic acid JP3, (4) 4 (2-hydroxybenzylidene)amino benzoic acid JP4, (5) 4 (4-hydroxy-3-methoxybenzylidene)amino benzoic acid JP5 and (6) 4 (3-nitrobenzylidene)amino benzoic acid JP6. They were screened as potential antibacterial agents against a number of medically important bacterial strains. The antibacterial activity was studied against A. faecalis ATCC 8750, E. aerogenes ATCC 13048, E. coli ATCC 25922, K. pneumoniae NCIM 2719 S. aureus ATCC 25923, P. vulgaris NCIM 8313, P. aeruginosa ATCC 27853 and S. typhimurium ATCC 23564. The antibacterial activity was evaluated using the Agar Ditch method. The solvents used were 1,4-dioxane and dimethyl sulfoxide. Different effects of the compounds were found in the bacterial strains in vestigated and the solvents used, suggesting, once again, that the antibacterial activity is dependent on the molecular structure of the compound, the solvent used and the bacterial strain under consideration. In the present work, 1,4-dioxane proved to be a good solvent in inhibiting the above stated bacterial strains.


Author(s):  
Aleksandar Dolashki ◽  
Lyudmila Velkova ◽  
Elmira Daskalova ◽  
N. Zheleva ◽  
Yana Topalova ◽  
...  

Natural products have long played a major role in medicine and science. The garden snail Cornu aspersa is a rich source of biologically active natural substances which might be an important source for new drugs to treat human disease. Based on our previous studies seven fractions containing compounds with Mw <3 kDa, <10 kDa, <20 kDa, >20 kDa, and between 3-5 kDa, 5-10 kDa, and 10-30 kDa were purified from the mucus of C. aspersa and analyzed by tandem mass spectrometry (MALDI-TOF/TOF). Seventeen novel peptides with potential antibacterial activity have been identified by de novo MS/MS sequencing using tandem mass spectrometry. The different fractions were tested for antibacterial activity against Gram─ (Pseudomonas aureofaciens and Escherichia coli) and Gram+ (Brevibacillus laterosporus) bacterial strains as well anaerobic bacterium Clostridium perfringens. These results revealed that the peptide fractions exhibit a predominant antibacterial activity against B. laterosporus, the fraction with Mw 10 – 30 kDa against E. coli, another peptide fraction <20 kDa against P. aureofaciens, and the protein fraction >20 kDa against the bacterial strain C. perfringens. The discovery of new antimicrobial peptides (AMPs) from natural sources is of great importance for public health due to their effective antimicrobial activities and low resistance rates.


2009 ◽  
Vol 58 (4) ◽  
pp. 436-441 ◽  
Author(s):  
Lucia Birošová ◽  
Mária Mikulášová

The possible association between the use of triclosan and the development of antibiotic resistance was examined in triclosan-resistant mutants of Salmonella enterica serovar Typhimurium. These mutants were obtained from a sensitive parental strain and from ciprofloxacin-resistant isogenic strains using spontaneous mutagenesis or selection after one short exposure or continuous exposure to low concentrations of triclosan. The results showed that triclosan in the environment does not increase the mutation frequency but selects bacterial strains with reduced antibiotic susceptibility. This property depended on the multiple antibiotic resistance (Mar) phenotype of bacterial strains and on the triclosan concentration.


2020 ◽  
Vol 10 (4) ◽  
pp. 93-97
Author(s):  
Anil Kumar A ◽  
Raja Sheker K ◽  
Naveen B ◽  
Abhilash G ◽  
Akila CR

Seas assets that give us a variety of characteristic items to control bacterial, contagious and viral ailment and mostly utilized for malignancy chemotherapy practically from spineless creatures, for example, bryozoans, wipes, delicate corals, coelenterates, ocean fans, ocean bunnies, molluscs and echinoderms. In the previous 30 - 40 years, marine plants and creatures have been the focal point of overall endeavours to characterize the regular results of the marine condition. Numerous marine characteristic items have been effectively exceptional to the last phases of clinical preliminaries, including dolastatin-10, a group of peptides disengaged from Indian ocean rabbit, Dollabella auricularia. Ecteinascidin-743 from mangrove tunicate Ecteinascidia turbinata, Didemnins was isolated from Caribbean tunicate Trididemnum solidum and Conopeptides from cone snails (Conus sp.), and a developing number of up-and-comers have been chosen as promising leads for expanded pre-clinical appraisals. Sea anemones possess numerous tentacles containing stinging cells or cnidocytes. The stinging cells are equipped with small organelles known as nematocysts. The two species of sea anemones namely, Heteractis magnificaandStichodactyla haddoni, were collected from Mandapam coastal waters of Ramanathapuram district, Tamilnadu, India. The Nematocyst was collected and centrifuged, and the supernatant was lyophilized and stored for further analysis. The amount of protein from Heteractis Magnifica and Stichodactyla haddoni was estimated. The crude extract has shown haemolytic activity on chicken blood and goat blood. In the antibacterial activity of the sea anemone against six bacterial strains Staphylococcus aureus, Salmonella typhii, Salmonella paratyphii, Klebsiella pneumonia, Vibrio cholerae, Pseudomonas aeruginosa. Antibacterial activity of H. Magnifica and S.haddoni was measured as the radius of the zone of inhibition.


2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


Sign in / Sign up

Export Citation Format

Share Document