scholarly journals Variations in Soil Water Content and Evapotranspiration in Relation to Precipitation Pulses within Desert Steppe in Inner Mongolia, China

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 198 ◽  
Author(s):  
Yifan Song ◽  
Yajing Lu ◽  
Zhongxiao Guo ◽  
Xiaomin Xu ◽  
Tiejun Liu ◽  
...  

Neither single nor discontinuous hydrological observation data can truly reflect periodic changes in soil moisture under natural conditions or interrelationships between various water sources. Therefore, in this study, precipitation pulse characteristics and variations in the soil water content (SWC) and actual evapotranspiration (ETa) in relation to pulses are explored through a field multi-water continuous observation system set in desert steppe in Inner Mongolia, China. A comparison between precipitation events in the growing seasons of 2016 and 2017 shows that precipitation events that are greater than 10 mm are the main cause of dramatic interannual precipitation variations in this region. A single small precipitation event has a limited impact on SWC and provides no obvious increase in the SWC within the top 10 cm soil layer. The precipitation interval ratio (P/I) is suitable for comparing water stresses of different drying-wetting cycles, and correlations between soil layers are found to be closer in humid years than in dry years. In this study, three modes of interpulse ETa in the desert steppe are discussed: a stable ETa mode under a water-sufficient condition, an attenuation ETa mode, and a stable ETa mode under extreme drought conditions.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11766
Author(s):  
Mao Yang ◽  
Runya Yang ◽  
Yanni Li ◽  
Yinghua Pan ◽  
Junna Sun ◽  
...  

The aim of this study was to find a material suited for the prevention of evaporative water loss and salt accumulation in coastal saline soils. One-dimensional vertical water infiltration and phreatic evaporation experiments were conducted using a silty loam saline soil. A 3-cm-thick layer of corn straw, biochar, and peat was buried at the soil depth of 20 cm, and a 6-cm-thick layer of peat was also buried at the same soil depth for comparison. The presence of the biochar layer increased the upper soil water content, but its ability to inhibit salt accumulation was poor, leading to a high salt concentration in the surface soil. The 3-cm-thick straw and 6-cm-thick peat layers were most effective to inhibit salt accumulation, which reduced the upper soil salt concentration by 96% and 93%, respectively. However, the straw layer strongly inhibited phreatic evaporation and resulted in low water content in the upper soil layer. Compared with the straw layer, the peat layer increased the upper soil water content. Thus, burying a 6-cm-thick peat layer in the coastal saline soil is the optimal strategy to retain water in the upper soil layer and intercept salt in the deeper soil layer.


2020 ◽  
Vol 20 (3) ◽  
pp. 860-870 ◽  
Author(s):  
Tao Li ◽  
Jian-feng Zhang ◽  
Si-yuan Xiong ◽  
Rui-xi Zhang

Abstract Assessing the spatial variability of soil water content is important for precision agriculture. To measure the spatial variability of the soil water content and to determine the optimal number of sampling sites for predicting the mean soil water content at different stages of the irrigation cycle, field experiments were carried out in a potato field in northwestern China. The soil water content was measured in 2016 and 2017 at depths of 0–20 and 20–40 cm at 116 georeferenced locations. The average coefficient of variation of the soil water content was 20.79% before irrigation and was 16.44% after irrigation at a depth of 0–20 cm. The spatial structure of the soil water content at a depth of 20–40 cm was similar throughout the irrigation cycle, but at a depth of 0–20 cm a relatively greater portion of the variation in the soil water content was spatially structured before irrigation than after irrigation. The autocorrelation of soil water contents was influenced by irrigation only in the surface soil layer. To accurately predict mean soil moisture content, 40 and 20 random sampling sites should be chosen with errors of 5% and 10%, respectively.


2012 ◽  
Vol 550-553 ◽  
pp. 1340-1344
Author(s):  
Ren Kuan Liao ◽  
Pei Ling Yang ◽  
Shu Mei Ren ◽  
Hang Yi ◽  
Long Wang ◽  
...  

In the North China plain, serious Non-point-source (NPS) pollution and drought are two great concerns in agricultural production. In our studies, two typical chemical agents ( SAP and FA ) were selected to control drought and pollution in a cheery orchard. Soil water content, nutrient transport in soil profile have been researched. The results showed that the soil water content of treatments with chemical agents increased maximally by 19.4% relative to treatment without chemical agents, and increased by 35.2% for Ammonium-N in 20-60 cm soil layer ( main root zone ). However, in 60-120 cm deeper soil layer, the water leakage of treatments with chemical agents decreased averagely by 15.1% relative to treatment without chemical agents, and increased by 43.8% for Nitrate-N. The chemical agents hold water and nutrient in root zone and thus reducing the risk of pollutant leaching into the underground water. It can be found that treatment ( 150kg/h㎡ SAP + 300 times FA ) is the optimal combination group in all treatments. The chemical prevention technology provided a new guide for controlling drought and reducing NPS pollution in cherry planting in the North China plain.


2020 ◽  
Author(s):  
Judith Eeckman ◽  
Hélène Roux ◽  
Bertrand Bonan ◽  
Clément Albergel ◽  
Audrey Douniot

<p>The representation of soil moisture is a key factor for the simulation of flash flood in the Mediterranean region. The MARINE hydrological model is a distributed model dedicaded to flash flood simulation. Recent developments of the MARINE model lead to an improvement of the subsurface flow representation : on the one hand, the transfers through the subsurface take place in a homogeneous soil column based on the volumic soil water content instead of the water height. On the other hand, the soil column is divided into two layers, which represent respectively the upper soil layer and the deep weathered rocks. The aim of this work is to assess the performances of these new representations of the subsurface flow with respect to the soil saturation dynamics during flash flood events. The performances of the model are estimated with respect to three soil moisture products: i) the gridded soil moisture product provided by the LDAS-Monde assimilation chain. LDAS-Monde is based on the ISBA-a-gs land surface model and integrates high resolution spatial remote sensing data from the Copernicus Global Land Service for vegetation through data assimilation; ii) the upper soil moisture measurements taken from the SMOSMANIA observation network ; iii) The satellite derived surface soil moisture data from Sentinel1. The case study is led over two french mediterranean catchments impacted by flash flood events over the 2017-2019 period and where one SMOSMANIA station is available. Additionnal tests for the initialisation of MARINE water content for the two soil layers are assessed. Results show first that the dynamic of the soil moisture both provided by LDAS-Monde and simulated for the upper soil layer in MARINE are locally consistent with the SMOSMANIA observations. Secondly, the use of soil water content instead of water height to describe lateral flows in MARINE is cleary more relevant with respect to both LDAS-Monde simulations and SMOSMANIA stations. The dynamic of the deep layer moisture content also appears to be consistent with the LDAS-Monde product for deeper layers. However, the bias on these values strongly rely on the calibration of the new two-layers model. The opportunity of improving the two-layers model calibration is then discussed. Finally, the impact of the soil water content initialisation is shown to be significant mainly during the flood rising, and also to be dependent on the model calibration. In conclusion, the new developments presented for the representation of subsurface flow in the MARINE model appear to enhance the soil moisture simulation during flash floods, with respect to both the LDAS-Monde product and the SMOSMANIA observation network.</p>


Author(s):  
Chengfu Yuan

Abstract In order to explore the regional water-salt balance mechanism in Hetao Irrigation District. Field experiments were conducted in 2018 and 2019 in Heji canal study area. The SWAP model was calibrated and validated based on field experiments observed data. The SWAP model was used to simulate soil water-salt dynamic in saline wasteland after calibration and validation. The results showed that model simulation results of soil water content and soil salt concentration agreed well with the measured values. Soil water content and soil salt concentration changed obviously under the effect of farmland irrigation in crop growing period. Soil salt was accumulated in saline wasteland. The soil salt accumulation of each soil layer in saline wasteland was 0.164, 0.092, −0.890 and −1.261 mg/cm3, respectively. Soil water content gradually increased and soil salt concentration gradually decreased in autumn irrigation period. Soil salt was leached in saline wasteland. The soil salt accumulation of each soil layer in saline wasteland was −1.011, −1.242, −1.218 and −1.335 mg/cm3, respectively. The saline wasteland became in drainage and salt drainage region for cultivated land. The saline wastelands had an obvious role in adjusting salt balance and maintain salt dynamic balance in Hetao Irrigation District.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zizhao Zhang ◽  
Xiaoli Guo ◽  
Qianli Lv ◽  
Ruihua Hao ◽  
Zezhou Guo ◽  
...  

Because of the arid climate and fragile ecological environment in Xinjiang, China, land reclamation should be carried out after mining. The core of land reclamation is the water content of the surface covering soil. In this paper, the law of water distribution in reclamation reconstructed soil of nonmetal mines in Xinjiang was studied. In order to obtain the law of water distribution in reconstructed soil, we set up an observation system of the neutron probe and tensiometer. The neutron probe was used to monitor the soil water content. The tensiometers were used to obtain the matrix potential of soil for verifying the water distribution in reconstructed soil. Volumetric water content and matrix potential of reconstructed soil during 1-year period of management and irrigation were obtained by long-term monitoring. After one year’s field in situ test, 2424 sets of neutron probe data and 1368 sets of tensiometer data were obtained. By studying the above parameters, we summarized the law of water distribution in reconstructed soil of variable thickness and degree of compaction with nonmetallic waste rock filling. The results showed that covering soil was helpful to retain water content. Whether the soil was compacted or uncompacted, the soil water content at the depth of 10 cm was less than that at other depth of reconstructed soil because it was greatly affected by meteorological factors. The water content of reconstructed soil at 30 cm depth was greater than that at other depths. Under the influence of factors such as the thickness and compaction of the soil, the response time of soil water content and matrix potential to each irrigation infiltration was different. According to the characteristics of reclamation-vegetation such as alfalfa growth in Xinjiang, the thickness of surface reconstructed soil should be not less than 50 cm. Over time, soil that was compacted once was better for the vegetation. The research results could provide a reference for the land reclamation of nonmetallic mines in Xinjiang, China.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1463
Author(s):  
Ya Hu ◽  
Xiaoan Zuo ◽  
Ping Yue ◽  
Shenglong Zhao ◽  
Xinxin Guo ◽  
...  

Understanding the effects of precipitation variations on plant biochemical and functional traits is crucial to predict plant adaptation to future climate changes. The dominant species, Stipa glareosa, plays an important role in maintaining the structure and function of plant communities in the desert steppe, Inner Mongolia. However, little is known about how altered precipitation affects biochemical and functional traits of S. glareosa in different communities in the desert steppe. Here, we examined the responses of biochemical and functional traits of S. glareosa in shrub- and grass-dominated communities to experimentally increased precipitation (control, +20%, +40%, and +60%). We found that +40% and +60% increased plant height and leaf dry matter content (LDMC) and decreased specific leaf area (SLA) of S. glareosa in grass community. For biochemical traits in grass community, +60% decreased the contents of protein and chlorophyll b (Cb), while +40% increased the relative electrical conductivity and superoxide dismutase. Additionally, +20% increased LDMC and malondialaenyde, and decreased SLA and protein in shrub community. Chlorophyll a, Cb, carotenoids, protein and superoxide dismutase in the grass community differed with shrub community, while +60% caused differences in SLA, LDMC, leaf carbon content, malondialaenyde and peroxidase between two communities. The positive or negative linear patterns were observed between different functional and biochemical traits in grass- rather than shrub-community. Soil water content explained changes in some biochemical traits in the grass community, but not for functional traits. These results suggest that increased precipitation can affect functional traits of S. glareosa in the grass community by altering biochemical traits caused by soil water content. The biochemical and functional traits of S. glareosa were more sensitive to extreme precipitation in grass- than shrub-community in the desert steppe. Our study highlights the important differences in adaptive strategies of S. glareosa in different plant communities at the same site to precipitation changes.


Sign in / Sign up

Export Citation Format

Share Document