scholarly journals Physics-Based Simulation of Ocean Scenes in Marine Simulator Visual System

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 215 ◽  
Author(s):  
Haijiang Li ◽  
Hongxiang Ren ◽  
Shaoyang Qiu ◽  
Chang Wang

The realistic simulation of ocean scenes is of great significance in many scientific fields. We propose an improved Smoothed Particle Hydrodynamics (SPH) framework to simulate the ocean scenes. The improved SPH combines nonlinear constant density constraints and divergence-free velocity field constraint. Density constraints adjust the particle distribution on position layer, so that the density is constrained to a constant state. The addition of the divergence-free velocity field constraint significantly accelerates the convergence of constant density constraint and further reduces the density change. The simulation results show that the improved SPH has high solution efficiency, large time steps, and strong stability. Then, we introduce a unified boundary handling model to simulate coupling scenes. The model samples the boundary geometry as particles by means of single layer nonuniform sampling. The contribution of the boundary particles is taken into account when the physical quantities of fluid particles are computed. The unified model can handle various types of complex geometry adaptively. When rendering the ocean, we propose an improved anisotropic screen space fluid method, which alleviates the discontinuity problem near the boundary and maintains the anisotropy of particles. The research provides a theoretical reference for the highly believable maritime scene simulation in marine simulators.

Author(s):  
Jiabin Yang ◽  
Chao Li ◽  
Mengyuan Tian ◽  
Shuyu Liu ◽  
Boyang Shen ◽  
...  

AbstractThe conductor on round core (CORC) cable wound with second-generation high-temperature superconducting (HTS) tapes is a promising cable candidate with superiority in current capacity and mechanical strength. The composing superconductors and the former are tightly assembled, resulting in a strong electro-magnetic interaction between them. Correspondingly, the AC loss is influenced by the cable structure. In this paper, a 3D finite-element model of the CORC cable is first built, and it includes the complex geometry, the angular dependence of critical current and the periodic settings. The modelling is verified by the measurements conducted for the transport loss of a two-layer CORC cable. Subsequently, the simulated results show that the primary transport loss shifts from the former to the superconductors as the current increases. Meanwhile, the loss exhibited in the outer layer is larger than that of the inner layer, which is caused by the shielding effect among layers and the former. This also leads to the current inhomogeneity in CORC cables. In contrast with the two-layer case, the simulated single-layer structure indicates stronger frequency dependence because the eddy current loss in the copper former is always dominant without the cancellation of the opposite-wound layers. The core eddy current of the single structure is denser on the outer surface. Finally, the AC transport losses among a straight HTS tape, a two-layer cable and a single-layer cable are compared. The two-layer structure is confirmed to minimise the loss, meaning an even-numbered arrangement makes better use of the cable space and superconducting materials. Having illustrated the electro-magnetic behaviour inside the CORC cable, this work is an essential reference for the structure design of CORC cables.


1930 ◽  
Vol 14 (1) ◽  
pp. 139-162 ◽  
Author(s):  
L. R. Blinks

Electrical resistance and polarization were measured during the passage of direct current across a single layer of protoplasm in the cells of Valonia ventricosa impaled upon capillaries. These were correlated with five stages of the P.D. existing naturally across the protoplasm, as follows: 1. A stage of shock after impalement, when the P.D. drops from 5 mv. to zero and then slowly recovers. There is very little effective resistance in the protoplasm, and polarization is slight. 2. The stage of recovery and normal P.D., with values from 8 to 25 mv. (inside positive). The average is 15 mv. At first there is little or no polarization when small potentials are applied in either direction across the protoplasm, nor when very large currents pass outward (from sap to sea water). But when the positive current passes inward there is a sudden response at a critical applied potential ranging from 0.5 to 2.0 volts. The resistance then apparently rises as much as 10,000 ohms in some cases, and the rise occurs more quickly in succeeding applications after the first. When the potential is removed there is a back E.M.F. displayed. Later there is also an effect of such inward currents which persists into the first succeeding outward flow, causing a brief polarization at the first application of the reverse potential. Still later this polarization occurs at every exposure, and at increasingly lower values of applied potentials. Finally there is a "constant" state reached in which the polarization occurs with currents of either direction, and the apparent resistance is nearly uniform over a considerable range of applied potential. 3. A state of increased P.D.; to 100 mv. (inside positive) in artificial sap; and to 35 or 40 mv. in dilute sea water or 0.6 M MgSO4. The polarization response and apparent resistance are at first about as in sea water, but later decrease. 4. A reversed P.D., to 50 mv. (outside positive) produced by a variety of causes, especially by dilute sea water, and also by large flows of current in either direction. This stage is temporary and the cells promptly recover from it. While it persists the polarization appears to be much greater to outward currents than to inward. This can largely be ascribed to the reduction of the reversed P.D. 5. Disappearance of P.D. caused by death, and various toxic agents. The resistance and polarization of the protoplasm are negligible. The back E.M.F. of polarization is shown to account largely for the apparent resistance of the protoplasm. Its calculation from the observed resistance rises gives values up to 150 mv. in the early stages of recovery, and later values of 50 to 75 mv. in the "constant" state. These are compared with the back E.M.F. similarly calculated from the apparent resistance of intact cells. The electrical capacitance of the protoplasm is shown by the time curves to be of the order of 1 microfarad per cm.2 of surface.


Author(s):  
Qi Gao ◽  
Xingli Liu ◽  
Hongping Wang ◽  
Peng Wu ◽  
Mansu Jin ◽  
...  

Author(s):  
S. M. FROLOV ◽  
◽  
V. S. IVANOV ◽  
Vas. S. IVANOV ◽  
R. R. TUKHVATULLINA ◽  
...  

At present, when solving problems of hydrodynamics of viscous incompressible and compressible flows in conditions of complex geometry with moving elements, preference is often given to meshless numerical algorithms based on the Smoothed Particle Hydrodynamics (SPH). We have developed our own parallel SPH algorithm that uses graphic processors to solve various problems with very narrow slits, rotating and contacting disks, free surfaces, etc., which are difficult to attack by conventional mesh-based (e. g., finite volume (FV)) methods. To check the algorithm, we solved the problems: (i) on the steady-state temperature distribution inside the cylinder head of a piston engine; (ii) on the torque of a gear box with rotating gearwheels partially immersed in engine oil; and (iii) on the steady-state gas velocity field during purging of the piston engine cylinder with air.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Yayue Pan ◽  
Yong Chen ◽  
Zuyao Yu

In micro-stereolithograhy (μSL), high-speed fabrication is a critical challenge due to the long delay time for refreshing resin and retaining printed microfeatures. Thus, the mask-image-projection-based micro-stereolithograhy (MIP-μSL) using the constrained surface technique is investigated in this paper for quickly recoating liquid resin. It was reported in the literature that severe damages frequently happen in the part separation process in the constrained-surface-based MIP-μSL system. To conquer this problem, a single-layer movement separation approach was adopted, and the minimum delay time for refreshing resin was experimentally characterized. The experimental results verify that, compared with the existing MIP-μSL processes, the MIP-μSL process with single-layer movement separation method developed in this paper can build microstructures with complex geometry, with a faster build speed.


2020 ◽  
Author(s):  
Enrico Chinchella ◽  
Arianna Cauteruccio ◽  
Mattia Stagnaro ◽  
Andrea Freda ◽  
Luca Giovanni Lanza

<p>Wind is recognised as the major environmental source of error in precipitation measurements. For traditional catching type gauges, which are composed by a funnel to collect the precipitation and a container with a bluff body shape, the exposure effect produces the updraft and acceleration of the velocity field in front and above of the collector. These divert the trajectories of approaching hydrometeors producing  a relevant under-catch, which increases with increasing the wind velocity. This problem has been recently addressed in the literature using Computational Fluid Dynamics (CFD) simulations and a Lagrangian Particle Tracking (LPT) model to provide correction curves for various instruments, which closely match the under-catch observed in field measurements.</p><p>The present work concentrates on the Hotplate precipitation gauge developed at the Research Applications Laboratory, National Center for Atmospheric Research in Boulder, Colorado. The Hotplate differs from the traditional catching type gauges because it operates by means of an indirect thermodynamic principle. Therefore, it is not equipped with any funnel to collect the precipitation and is composed by a small disk with a diameter of 13 cm with two thin aluminium heated plates on the upper and lower faces. On the plates three concentric rings are installed to prevent the hydrometeors from sliding off during strong wind conditions.</p><p>In order to quantify the wind-induced error, the Unsteady Reynolds Averaged Navier Stokes (URANS) equations were numerically solved, with a k-ω SST turbulence closure model, to calculate the airflow velocity field around the instrument. Numerical results were validated by comparison with wind tunnel flow velocity measurements from pressure probes and a Particle Image Velocimetry (PIV) technique.</p><p>Then, with the objective to calculate the Collection Efficiency (CE) the hydrometeor trajectories were modelled using a literature LPT model (Colli et al. 2015) that solves the particle motion equation under the effects of gravity and wind. The path of each particle was analysed, considering the complex geometry of the gauge body, to establish whether it is captured by the instrument or not.</p><p>For various particle size/wind velocity combinations, the ratio between the number of particles captured by the instrument and the number of particles that would be captured if the instrument was transparent to the wind was calculated. Finally, the CE curve was derived assuming a suitable particle size distribution for solid precipitation.</p><p>The results show that the Hotplate gauge presents a very unique response to the wind if compared with more traditional instruments. The CE indeed decreases with increasing the wind speed up to 7.5 m/s, where the effect of geometry starts to overcome the aerodynamic effect, and slowly reverses the trend beyond that value. This effect is so prominent at high wind speed that slightly beyond 15 m/s the under-catch fully disappears and the instrument starts to exhibit a rapidly increasing over-catching bias.</p><p><strong>References:</strong></p><p>Colli, M., Lanza, L.G., Rasmussen, R., Thériault, J.M., Baker, B.C. & Kochendorfer, J. An improved trajectory model to evaluate the collection performance of snow gauges.  Journal of Applied Meteorology and Climatology, 2015, 54, 1826–1836.</p>


1968 ◽  
Vol 90 (4) ◽  
pp. 452-456 ◽  
Author(s):  
J. A. Schetz ◽  
Sin K. Oh

Transient development of the boundary layer on a flat plate following the impulsive start of motion of the surrounding fluid is analyzed approximately. The Howarth-Dorodnitzin transformation and a Crocco Integral are used to relate the temperature field to the approximate velocity field which is obtained in a “constant density” plane. The solution for the velocity field is determined using the unsteady Momentum Integral equation with a new type of profile. Expressions for the boundary-layer development time and model surface temperature at the end of the development time are presented. Good agreement with a roughly determined experimental flow development time is achieved.


Author(s):  
G. Oger ◽  
D. Le Touzé ◽  
G. Ducrozet ◽  
J. Candelier ◽  
P.-M. Guilcher

In order to help in achieving a correct design of structures subjected to wave impacts, CFD tools with a sufficient accuracy should be developed. But nowadays, modelling accurately both wave propagations and the resulting impact of a wave train on a complex geometry is still challenging. This paper deals with the introduction of a weak coupling between a Spectral method and Smoothed Particle Hydrodynamics (SPH), used as complementary techniques for modelling respectively wave propagation and high-dynamic impact of a wave train on a complex-shaped floating body. Comparisons with experiments are provided as a validation of these preliminary developments.


Sign in / Sign up

Export Citation Format

Share Document