scholarly journals Ammonium-Nitrogen (NH4+-N) Removal from Groundwater by a Dropping Nitrification Reactor: Characterization of NH4+-N Transformation and Bacterial Community in the Reactor

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 599 ◽  
Author(s):  
Amit Kumar Maharjan ◽  
Tatsuru Kamei ◽  
Iswar Man Amatya ◽  
Kazuhiro Mori ◽  
Futaba Kazama ◽  
...  

A dropping nitrification reactor was proposed as a low-cost and energy-saving option for the removal of NH4+-N from contaminated groundwater. The objectives of this study were to investigate NH4+-N removal performance and the nitrogen removal pathway and to characterize the microbial communities in the reactor. Polyolefin sponge cubes (10 mm × 10 mm × 10 mm) were connected diagonally in a nylon thread to produce 1 m long dropping nitrification units. Synthetic groundwater containing 50 mg L−1 NH4+-N was added from the top of the hanging units at a flow rate of 4.32 L day−1 for 56 days. Nitrogen-oxidizing microorganisms in the reactor removed 50.8–68.7% of the NH4+-N in the groundwater, which was aerated with atmospheric oxygen as it flowed downwards through the sponge units. Nitrogen transformation and the functional bacteria contributing to it were stratified in the sponge units. Nitrosomonadales-like AOB predominated and transformed NH4+-N to NO2−-N in the upper part of the reactor. Nitrospirales-like NOB predominated and transformed NO2−-N to NO3−-N in the lower part of the reactor. The dropping nitrification reactor could be a promising technology for oxidizing NH4+-N in groundwater and other similar contaminated wastewaters.

2010 ◽  
Vol 61 (12) ◽  
pp. 3061-3069 ◽  
Author(s):  
W. Khanitchaidecha ◽  
T. Nakamura ◽  
T. Sumino ◽  
F. Kazama

To study the effect of intermittent aeration period on ammonium–nitrogen (NH4-N) removal from groundwater resources, synthetic groundwater was prepared and three reactors were operated under different conditions – “reactor A” under continuous aeration, “reactor B” under 6 h intermittent aeration, and “reactor C” under 2 h intermittent aeration. To facilitate denitrification simultaneously with nitrification, “acetate” was added as an external carbon source with step-wise increase from 0.5 to 1.5 C/N ratio, where C stands for total carbon content in the system, and N for NH4-N concentration in the synthetic groundwater. Results show that complete NH4-N removal was obtained in “reactor B” and “reactor C” at 1.3 and 1.5 C/N ratio respectively; and partial NH4-N removal in “reactor A”. These results suggest that intermittent aeration at longer interval could enhance the reactor performance on NH4-N removal in terms of efficiency and low external carbon requirement. Because of consumption of internal carbon by the process, less amount of external carbon is required. Further increase in carbon in a form of acetate (1.5 to 2.5 C/N ratios) increases removal rate (represented by reaction rate coefficient (k) of kinetic equation) as well as occurrence of free cells. It suggests that the operating condition at reactor B with 1.3 C/N ratio is more appropriate for long-term operation at a pilot-scale.


Author(s):  
A. K. Maharjan ◽  
K. Mori ◽  
K. Nishida ◽  
T. Toyama

Abstract A novel dropping nitrification–cotton-based denitrification reactor was developed for total nitrogen (N) removal from ammonium (NH4+)-contaminated groundwater. The nitrogen removal ability of the reactor was evaluated for 91 days. A 1 m-long dropping nitrification unit was fed with synthetic groundwater containing 30 mg-NH4+-N/L at a flow rate of 2.16 L/d. The outlet of the dropping nitrification unit was connected to the cotton-based denitrification unit. The NH4+ present in the groundwater was completely oxidized (>90% nitrification efficiency) by nitrifying bacteria to nitrite (NO2–) and nitrate (NO3–) in the dropping nitrification unit. Subsequently, the generated NO2– and NO3– were denitrified (96%–98% denitrification efficiency) by denitrifying bacteria in the cotton-based denitrification unit under anoxic conditions. Organic carbons released from the cotton presumably acted as electron donors for heterotrophic denitrification. Nitrifying and denitrifying bacteria were colonized in higher abundance in the dropping nitrification and cotton-based denitrification units, respectively. The total N removal rate and efficiency of the dropping nitrification–cotton-based denitrification reactor for 91 days were 58.1–66.9 mg-N/d and 96%–98%, respectively. Therefore, the dropping nitrification–cotton-based denitrification reactor will be an efficient, sustainable, and promising option for total N removal from NH4+-contaminated groundwater.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1326
Author(s):  
Amit Kumar Maharjan ◽  
Kazuhiro Mori ◽  
Tadashi Toyama

Constructed wetlands (CWs) are an effective technology to remove organic compounds and nitrogen (N) from wastewaters and contaminated environmental waters. However, the feasibility of CWs for ammonium-N (NH4+-N)-contaminated groundwater treatment is unclear. In this study, zeolite-based laboratory-scale CW was operated as a tidal flow CW with a cycle consisting of 21-h flooded and 3-h rest, and used to treat NH4+-N (30 mg L−1) contaminated groundwater. In addition to NH4+-N, nitrite (NO2−-N) and nitrate (NO3−-N) were also not detected in the effluents from the tidal flow CW. The N removal constant remained high for a longer period of time compared to the continuous flow CW. The higher and more sustainable N removal of the tidal flow CW was due to the in-situ biological regeneration of zeolite NH4+-N adsorption capacity. Vegetation of common reeds in tidal flow zeolite-based CW enhanced nitrification and heterotrophic denitrification activities, and increased the functional genes of nitrification (AOB-amoA and nxrA) and denitrification (narG, nirK, nirS, and nosZ) by 2‒3 orders of magnitude, compared to CW without vegetation. The results suggest that the combination of zeolite substrate, tidal flow, and vegetation is key for the highly efficient and sustainable N removal from NH4+-N contaminated groundwater.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2682
Author(s):  
Gyuhyeon Kim ◽  
Young-Mo Kim ◽  
Su-Min Kim ◽  
Hyun-Uk Cho ◽  
Jong-Moon Park

In this study, magnetic steel slag biochar (MSSB) was synthesized from low-cost steel slag waste to investigate the effectiveness of steel slag biochar composite for NH4-N removal and magnetic properties in aqueous solution. The maximum adsorption capacity of NH4-N by MSSB was 4.366 mg/g according to the Langmuir model. The magnetic properties of MSSB indicated paramagnetic behavior and a saturation magnetic moment of 2.30 emu/g at 2 Tesla. The NH4-N adsorption process was well characterized by the pseudo-second order kinetic model and Temkin isotherm model. This study demonstrated the potential of magnetic biochar synthesized from steel slag waste for NH4-N removal in aqueous solution.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 459
Author(s):  
Ignacio Cazcarro ◽  
Albert E. Steenge

This article originates from the theoretical and empirical characterization of factors in the World Trade Model (WTM). It first illustrates the usefulness of this type of model for water research to address policy questions related to virtual water trade, water constraints and water scarcity. It also illustrates the importance of certain key decisions regarding the heterogeneity of water and its relation to the technologies being employed and the prices obtained. With regard to WTM, the global economic input–output model in which multiple technologies can produce a “homogeneous output”, it was recently shown that two different mechanisms should be distinguished by which multiple technologies can arise, i.e., from “technology-specific” or from “shared” factors, which implies a mechanism-specific set of prices, quantities and rents. We discuss and extend these characterizations, notably in relation to the real-world characterization of water as a factor (for which we use the terms technology specific, fully shared and “mixed”). We propose that the presence of these separate mechanisms results in the models being sensitive to relatively small variations in specific numerical values. To address this sensitivity, we suggest a specific role for specific (sub)models or key choices to counter unrealistic model outcomes. To support our proposal we present a selection of simulations for aggregated world regions, and show how key results concerning quantities, prices and rents can be subject to considerable change depending on the precise definitions of resource endowments and the technology-specificity of the factors. For instance, depending on the adopted water heterogeneity level, outcomes can vary from relatively low-cost solutions to higher cost ones and can even reach infeasibility. In the main model discussed here (WTM) factor prices are exogenous, which also contributes to the overall numerical sensitivity of the model. All this affects to a large extent our interpretation of the water challenges, which preferably need to be assessed in integrated frameworks, to account for the main socioeconomic variables, technologies and resources.


Author(s):  
Dorota Zając ◽  
Dariusz Przybylski ◽  
Jadwiga Sołoducho

AbstractDeveloping effective and low‐cost organic semiconductors is an opportunity for the development of organic solar cells (OPV). Herein, we report the molecular design, synthesis and characterization of two molecules with D–A–D–A configuration: 2-cyano-3-(5-(8-(3,4-ethylenodioxythiophen-5-yl)-2,3-diphenylquinoxalin-5-yl)thiophen-2-yl)acrylic acid (6) and 2-cyano-3-(5-(2,3-diphenyl-8-(thiophen-2-yl)quinoxalin-5-yl)thiophen-2-yl)acrylic acid (7). Moreover, we investigated the structural, theoretical and optical properties. The distribution of HOMO/LUMO orbitals and the values of the ionization potential indicate good semiconducting properties of the compounds and that they can be a bipolar material. Also, the optical study show good absorption in visible light (λabs 380–550 nm). We investigate the theoretical optoelectronic properties of obtained compounds as potential materials for solar cells.


Sign in / Sign up

Export Citation Format

Share Document