scholarly journals Formation of Soil Chemical Environment in Coastal Pinus thunbergii Parlatore Forest in Southwestern Japan

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1544 ◽  
Author(s):  
Akira Haraguchi ◽  
Masato Sakaki

We investigated the chemical properties of precipitation and litter fall, and their effects on soil chemistry, in a coastal forest consisting of pure Pinus thunbergii stands, Pinus-dominated stands with broadleaf trees in the understory, mixed stands of Pinus and evergreen broadleaf trees, and evergreen broadleaf stands. Throughfall pH in the pure Pinus stand was significantly lower than those in the other three stands, and the soil in the pure Pinus stand was determined to be acidic (pH = ca. 5.0). In Pinus-dominated stands with broadleaf species in the understory, precipitation had a neutralizing effect in the foliage of broadleaf species in the understory of the Pinus stand and the pH levels of their surface mineral soil were significantly higher than those in the pure Pinus stand. The soil pH level was low in the pure Pinus stand, and then increased with an increasing dominance of broadleaf species in the understory. The soil pH was lowered with an increasing dominance of broadleaf species in the canopy layer. A litter layer consisting of decomposable litter of broadleaf species with low C/N ratio acidified precipitation that was deposited as throughfall on the litter surface. Nitrates in the soil-extracted water from the mixed stand and from the evergreen broadleaf stand were significantly higher than the nitrates of stands with high dominance of Pinus. Higher nitrogen flux in the mixed stand and in the evergreen broadleaf stand, as well as a lower C/N ratio of the litter of broadleaf species, accelerated nitrogen accumulation in the soil in stands with high broadleaf species dominance in the canopy compared to the Pinus-dominated stand. Thus, the accumulation of nitrogen in the soil through litter fall is a possible factor that promotes succession from Pinus stands to evergreen broadleaf stands.

1998 ◽  
Vol 78 (3) ◽  
pp. 477-479 ◽  
Author(s):  
C. J. Westman ◽  
S. Jauhiainen

Forest soil pH in southwest Finland was measured with identical sampling and analysing methods in 1970 and 1989. The acidity of the organic humus layer increased significantly as pH values measured on water and on salt suspensions decreased between the two sampling dates. For the mineral soil layers, no unambiguous trend was found. pH values measured on salt suspension tended to be unchanged or lower, while pH on water suspension in some soil layers were even higher in 1989 than in 1970. Key words: pH, repeated sampling


2009 ◽  
pp. 143-158
Author(s):  
Milun Krstic ◽  
Bojana Cevrljakovic

The study was carried out in sessile oak forests and beech forests in the region central Serbia. The stands are classified as pure stands with the percentage of other species up to 10% per tree number, mixed forests of sessile oak with other species, and mixed forests of beech with other species, whose percentage does not exceed 50%. Altogether 257 stands were monitored - 202 beech stands and 55 sessile oak stands. By the applied method of defining the local heat potential (Lujic, 1960), modified by Ratknic et al. (2001) and Krstic (2004, 2008), which represents possibility of soil heating without vegetation, were determined. In this way, a scale of 162 possible combinations of local heat potential was obtained, which explains more precisely the dependence of beech stands and sessile oak stands on the topographic conditions. By applying the weighted values of the thermal co-ordinates of aspect and slope (E) for each altitudinal belt of 100 m, it was concluded that pure stands have the widest ecological range. Pure beech stands occur at the sites with 34 combinations of thermal co-ordinates E.V=4.6 to 8.12. Pure sessile oak stands occur at the sites with 12 combinations of thermal co-ordinates E.V=5.10 to 8.11. The percentage of mixed beech stands with other broadleaf species is the highest at the sites with the co-ordinate V=10-11 (at the altitudes between 700 and 900 m) is about 60 %. Mixed stands of sessile oak and beech are located on the terrains with combinations of thermal co-ordinates E.V=7.9 to 8.12. By using the local heat potential of a region, it can be identified which sites, i.e. which combinations of exposure, slope and altitude belong to the particular tree species. Consequently, a more reliable selection of tree species can be done for the bio-reclamation of barrens and other deforested terrains.


1992 ◽  
Vol 22 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Xiwei Yin

Published data were analyzed to examine whether nitrogen (N) availability varies along macroclimatic gradients in North America. Extractable N produced during 8-week aerobic laboratory incubation was used as an index of potential net N mineralization. Mean extractable N during the growing season in the forest floor plus top mineral soil was used as an index of the available N pool. Using multiple regression, potential net N mineralization was shown to increase with available N and with litter-fall N (R2 = 0.722). Available N increased with increasing total soil N and with decreasing mean January and July air temperatures (R2 = 0.770). These relationships appeared to hold also for deciduous and coniferous forests separately across regions. Results suggest that net N mineralization output under uniform temperature and moisture conditions can be generally expressed by variations of N input (litter fall) and the available soil N pool, and that the available soil N pool is predictable along a temperature gradient at a regional scale.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 897 ◽  
Author(s):  
Magh ◽  
Bonn ◽  
Grote ◽  
Burzlaff ◽  
Pfautsch ◽  
...  

Research Highlights: Investigations of evapotranspiration in a mature mixed beech-fir forest stand do not indicate higher resilience towards intensified drying-wetting cycles as compared with pure beech stands. Background and Objectives: Forest management seeks to implement adaptive measures, for example, the introduction of more drought resistant species into prevailing monospecific stands to minimize forest mortality and monetary losses. In Central Europe this includes the introduction of native silver fir (Abies alba) into monospecific beech (Fagus sylvatica) stands. In order to determine, if the introduction of fir would improve the resilience against drier conditions, this study investigates water relations of a mature pure beech and a mature mixed beech-fir stand under natural as well as reduced water availability. Materials and Methods: Sap flow rates and densities were measured in two consecutive years using the heat ratio method and scaled using stand inventory data and modeling. Results: Transpiration rates estimated from sap flow were significantly higher for beech trees as compared with silver fir which was attributed to the more anisohydric water-use strategy of the beech trees. We estimate that stand evapotranspiration was slightly higher for mixed stands due to higher interception losses from the mixed stand during times of above average water supply. When precipitation was restricted, beech was not able to support its transpiration demands, and therefore there was reduced sap flow rates in the mixed, as well as in the pure stand, whereas transpiration of fir was largely unaffected, likely due to its more isohydric behavior toward water use and access to moister soil layers. Thus, we found the rates of evapotranspiration in the mixed beech-fir stand to be smaller during times with no precipitation as compared with the pure beech stand, which was accountable to the severely reduced transpiration of beech in the mixed stand. Conclusions: We conclude that smaller evapotranspiration rates in the mixed beech-fir stand might not be the result of increased water use efficiency but rather caused by restricted hydraulic conductivity of the root system of beech, making mixed beech-fir stands at this site less resilient towards drought.


2019 ◽  
Vol 139 (2) ◽  
pp. 189-211 ◽  
Author(s):  
Arne Nothdurft ◽  
Markus Engel

Abstract Penalized regression splines and distributed lag models were used to evaluate the effects of species mixing on productivity and climate-related resistance via tree-ring width measurements from sample cores. Data were collected in Lower Austria from sample plots arranged in a triplet design. Triplets were established for sessile oak [Quercus petraea (Matt.) Liebl.] and Scots pine (Pinus sylvestris L.), European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) H. Karst.], and European beech and European larch (Larix decidua Mill.). Mixing shortened the temporal range of time-lagged climate effects for beech, spruce, and larch, but only slightly changed the effects for oak and pine. Beech and spruce as well as beech and larch exhibited contrasting climate responses, which were consequently reversed by mixing. Single-tree productivity was reduced by between − 15% and − 28% in both the mixed oak–pine and beech–spruce stands but only slightly reduced in the mixed beech–larch stands. Measures of climate sensitivity and resistance were derived by model predictions of conditional expectations for simulated climate sequences. The relative climate sensitivity was, respectively, reduced by between − 16 and − 39 percentage points in both the beech–spruce and beech–larch mixed stands. The relative climate sensitivity of pine increased through mixing, but remained unaffected for oak. Mixing increased the resistance in both the beech–larch and the beech–spruce mixed stand. In the mixed oak–pine stand, resistance of pine was decreased and remained unchanged for oak.


2006 ◽  
Vol 36 (6) ◽  
pp. 1484-1496 ◽  
Author(s):  
M M Amoroso ◽  
E C Turnblom

We studied pure and 50/50 mixtures of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) plantations to compare attained total yields between mixed-species stands as opposed to monocultures of equal densities. Whether overall stand density influences this outcome has not been adequately investigated, and to address this we included three density levels (494, 1111, and 1729 trees/ha) in the analysis. At age 12, as components of the mixed stands, Douglas-fir exhibited greater height, diameter, and individual-tree volume than western hemlock at all densities. At 494 and 1111 trees/ha the monocultures had a higher volume per hectare than the mixed stand, but at 1729 trees/ha the mixed stand appeared to be just as productive as the pure stands. The increase in productivity by the mixture at high densities seems to have resulted from the partial stratification observed and most likely also from better use of the site resources. Because of this, less interspecific competition was probably experienced in the mixed stand than intraspecific competition in the pure stands. This study shows the important role density plays in the productivity of mixed stands and thus in comparing mixed and pure stands.


1992 ◽  
Vol 22 (9) ◽  
pp. 1434-1437 ◽  
Author(s):  
Charles C. Rhoades ◽  
Dan Binkley

We examined patterns in soil N availability and pH along transects extending from mixed stands of conifers (mostly Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco)) and red alder (Alnusrubra Bong.) to pure conifer stands at two locations. At the relatively infertile Wind River site, increased N availability was apparent for about 8–12 m downslope of the alder–conifer stand, but no effect was apparent upslope. At the fertile Cascade Head site, no trend was apparent in N availability across the stand boundaries, but soil pH in the conifer stand was depressed for about 5 m from the alder–conifer stand. Overall, the effects of alder on soil chemistry appeared limited to a distance of less than half the height of the trees.


2005 ◽  
Vol 35 (11) ◽  
pp. 2756-2764 ◽  
Author(s):  
Werner Borken ◽  
Fritz Beese

Soil respiration was measured in adjacent pure and mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) at Solling, Germany. Forest type had a significant effect on soil respiration, which was highest in the pure beech stand and lowest in the pure spruce stand. Both throughfall and soil temperature increased with the proportion of beech. Additionally, microbial respiration and biomass in the organic (O) horizons increased sequentially from the pure spruce to the pure beech stand, suggesting that abiotic and biotic factors enhanced the decomposition of litter under beech. Because the spruce litter decomposition rate was low, carbon (C) stocks of the O horizons increased with the proportion of spruce, from 1.6 to 5.1 kg C·m–2. The removal of the O horizons decreased soil respiration by 31%–45%, indicating a large contribution of the mineral soil and roots to total soil respiration. Turnover times of organic C in the O horizons ranged between 5.5 years in the pure beech stand and 20.6 years in the pure spruce stand. Our results suggest that tree species conversion may alter the turnover of soil organic matter, and thus the sequestration of organic C in the O horizons.


1989 ◽  
Vol 61 (2) ◽  
pp. 89-97
Author(s):  
Raina Niskanen

The extractability of soil Al, Fe and Mn were studied in 102 mineral soil samples. The extractants were 0.05 M oxalate (pH 2.9), 0.05 M K4P2O7 (pH 10), 0.02 M EDTA (pH 5.3) and 1 M CH3COONH4 (pH 4.8). In the group of clay and silt soils (n = 51), the Al extracted by the four extractants correlated closely; the r values ranged from 0.91*** to 0.96***; in coarser soils (n = 51) the r values ranged from 0.42* to 0.82***. In clay and silt soils, the organic carbon content and soil pH together explained 50 % of the variation in oxalate-extractable Al, 70 % of the variation in pyrophosphate-extractable Al, 53 % of the variation in pyrophosphate-extractable Fe and 56 % of the variation in acetate-extractable Al. The clay and organic carbon contents together with soil pH explained 77 % of the variation in EDTA-extractable Al in clay and silt soils. In coarse soils, the extractable metals were not closely related to the soil characteristics.


Sign in / Sign up

Export Citation Format

Share Document