scholarly journals Metal Mobilization As An Effect of Anthropogenic Contamination in Groundwater Aquifers in Tutuila, American Samoa

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2118
Author(s):  
Brytne K. Okuhata ◽  
Henrietta Dulai ◽  
Christopher K. Shuler ◽  
Joseph K. Fackrell ◽  
Aly I. El-Kadi

Groundwater is the primary drinking water source on most oceanic islands, including Tutuila, American Samoa. Drinking water quality on Tutuila is impacted by anthropogenic pollution sources such as on-site sewage disposal systems, piggeries, and agricultural leachate, particularly across the densely populated Tafuna–Leone Plain. The remineralization of anthropogenically sourced organic matter produces nitrate and dissolved inorganic carbon, which, according to previously published studies, have the potential to mobilize naturally occurring metals. This study provides further evidence that nutrients and dissolved inorganic carbon, along with naturally sourced metal concentrations, become elevated along pollution gradients and show correlation with each other. Across the Tafuna–Leone Plain, nitrate concentrations have a moderately positive correlation with uranium and vanadium. Dissolved inorganic carbon also positively correlate with nitrate, uranium, and vanadium. Similar studies elsewhere suggest that, in addition to nitrate, organic matter remineralization associated with carbonate create conditions to favor natural metal mobilization. Correlation analysis results imply that, while the surveyed trace metals are likely naturally sourced, some become soluble and more mobile in the presence of anthropogenically sourced nitrate and dissolved inorganic carbon, which alters redox conditions in the aquifer.

2016 ◽  
Vol 283 ◽  
pp. 330-337 ◽  
Author(s):  
Abdullah Ogutverici ◽  
Levent Yilmaz ◽  
Ulku Yetis ◽  
Filiz B. Dilek

Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Naohiko Ohkouchi ◽  
Timothy I Eglinton ◽  
John M Hayes

We have measured the radiocarbon contents of individual, solvent-extractable, short-chain (C14, C16, and C18) fatty acids isolated from Ross Sea surface sediments. The corresponding 14C ages are equivalent to that of the post-bomb dissolved inorganic carbon (DIC) reservoir. Moreover, molecular 14C variations in surficial (upper 15 cm) sediments indicate that these compounds may prove useful for reconstructing chronologies of Antarctic margin sediments containing uncertain (and potentially variable) quantities of relict organic carbon. A preliminary molecular 14C chronology suggests that the accumulation rate of relict organic matter has not changed during the last 500 14C yr. The focus of this study is to determine the validity of compound-specific 14C analysis as a technique for reconstructing chronologies of Antarctic margin sediments.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 533-543 ◽  
Author(s):  
Sheila Griffin ◽  
Ellen R M Druffel

Radiocarbon measurements in deep-sea corals from the Little Bahama Bank were used to determine the source of carbon to the skeletal matrices. Specimens of Lophelia, Gerardia, Paragorgia johnsoni and Corallium noibe were sectioned according to visible growth rings and/or stem diameter. We determined that the source of carbon to the corals accreting organic matter was primarily from surface-derived sources. Those corals that accrete a calcerous skeleton were found to obtain their carbon solely from dissolved inorganic carbon (DIC) in sea water from the depth at which the corals grew. These results, in conjunction with growth-rate studies using short-lived radioisotopes, support the use of deep-sea corals to reconstruct time histories of transient and non-transient tracers at depth in the oceans.


2008 ◽  
Vol 1 (1) ◽  
pp. 17-51 ◽  
Author(s):  
G. Shaffer ◽  
S. Malskær Olsen ◽  
J. O. Pepke Pedersen

Abstract. A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs. silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 Gt C input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2004 ◽  
Vol 92 (1-4) ◽  
pp. 353-366 ◽  
Author(s):  
Peter A. Raymond ◽  
James E. Bauer ◽  
Nina F. Caraco ◽  
Jonathan J. Cole ◽  
Brett Longworth ◽  
...  

2005 ◽  
Vol 62 (11) ◽  
pp. 2640-2648 ◽  
Author(s):  
Elvira Pulido-Villena ◽  
Isabel Reche ◽  
Rafael Morales-Baquero

The carbon isotopic signature (δ13C) of dissolved inorganic carbon and food web components was examined in two high mountain lakes. Río Seco Lake is partially surrounded by alpine meadows and has temporal inlets, whereas La Caldera Lake is located on rocky terrain and does not receive inputs from runoff. We assessed whether these contrasting catchments involve differences in the isotopic signature of the food web components and then in the reliance on terrestrial carbon. The δ13C of dissolved inorganic carbon was not significantly different between lakes and reflected an atmospheric gas exchange origin. Unexpectedly, bulk particulate organic matter showed enriched δ13C values in both lakes, suggesting a terrestrial vegetation influence. Bulk particulate organic matter was exploited mostly by the cladoceran Daphnia pulicaria, whereas the copepod Mixodiaptomus laciniatus was 13C depleted relative to particulate organic matter, indicating a selective feeding on an isotopically lighter source, likely phytoplankton. The results obtained show that, despite contrasting catchments, the food web of both lakes might be partially supported by terrestrial carbon for which utilization is species specific.


2018 ◽  
Author(s):  
Robert T. Letscher ◽  
Tracy A. Villareal

Abstract. Summertime drawdown of dissolved inorganic carbon in the absence of measurable nutrients from the mixed layer and subsurface negative preformed nitrate (preNO3) anomalies observed for the ocean's subtropical gyres are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute including biological nitrogen fixation, lateral nutrient transport, carbon overconsumption or non-Redfield C : N : P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. Here we investigate the seasonal formation rates and potential contributing mechanisms for negative preformed nitrate anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA in the North Pacific and BATS in the North Atlantic. Non-Redfield −O2 : N stoichiometry for dissolved organic matter (DOM) remineralization is found to account for up to ~ 15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ~ 32–46 mmol N m−2 yr−1 at station ALOHA and ~ 46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. Cycling of transparent exopolymer particles (TEP) and heterotrophic nitrate uptake can contribute to the formation of these preNO3 anomalies, however a significant fraction, estimated at ~ 50–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary nutrient acquisition strategy and biogeochemical signature to quantitatively explain both the residual negative and positive preNO3 anomalies as well as the mixed layer dissolved inorganic carbon drawdown at stations ALOHA and BATS. TEP production by the model Rhizosolenia mat system could provide accelerated vertical transport of TEP as well as link the three processes together. Phytoplankton vertical migrators, although rare and easily overlooked, may play a large role in subtropical ocean nutrient cycling and the biological pump.


Sign in / Sign up

Export Citation Format

Share Document