scholarly journals Major Controls on Streamflow of the Glacierized Urumqi River Basin in the Arid Region of Northwest China

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3062
Author(s):  
Muattar Saydi ◽  
Guoping Tang ◽  
Hong Fang

Understanding the main drivers of runoff availability has important implications for water-limited inland basins, where snow and ice melt provide essential input to the surface runoff. This paper presents an analysis on the runoff response to changes in climatic and other controls of water-energy balance in an inland glacierized basin, the Urumqi River basin, located in the arid region of northwest China, and identifies the major control to which runoff is sensitive across the basin’s heterogeneous subzones. The results indicate that the runoff is more sensitive to change in precipitation in the mountainous headwaters zone of the upper reach, and followed by the impact of basin characteristics. In contrast, the runoff is more sensitive to changes in the basin characteristics in the semiarid and arid zones of the mid and lower reaches. In addition, the change in basin characteristics might be represented by the distinct glacier recession in the mountainous upper reach zone and the increasing human interferences, i.e., changes in land surface condition and population growth, across the mid and lower reach zones. The glacier wasting contributed around 7% on average to the annual runoff between 1960 and 2012, with an augmentation beginning in the mid-1990s. Findings of this study might help to better understand the possible triggers of streamflow fluctuation and the magnitude of glacier wasting contribution to runoff in inland glacierized river basins.

Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ziwei Xiao ◽  
Peng Shi ◽  
Peng Jiang ◽  
Jianwei Hu ◽  
Simin Qu ◽  
...  

A better understanding of the runoff variations contributes to a better utilization of water resources and water conservancy planning. In this paper, we analyzed the runoff changes in the Yangtze River Basin (YRB) including the spatiotemporal characteristics of intra-annual variation, the trend, the mutation point, and the period of annual runoff using various statistical methods. We also investigated how changes in the precipitation and temperature could impact on runoff. We found that the intra-annual runoff shows a decreasing trend from 1954 to 2008 and from upper stream to lower stream. On the annual runoff sequence, the upstream runoff has a high consistency and shows an increasing diversity from upper stream to lower stream. The mutation points of the annual runoff in the YRB are years 1961 and 2004. Annual runoff presents multitime scales for dry and abundance changes. Hurst values show that the runoffs at the main control stations all have Hurst phenomenon (the persistence of annual runoff). The sensitivity analyses of runoff variation to precipitation and temperature were also conducted. Our results show that the response of runoff to precipitation is more sensitive than that to temperature. The response of runoff to temperature is only one-third of the response to precipitation. A decrease in temperature may offset the impact of decreasing rainfall on runoff, while an increase in both rainfall and temperature leads to strongest runoff variations in the YRB.


AGROFOR ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Cristian J. ANTONELLI ◽  
Pablo I. CALZADILLA ◽  
Francisco J. ESCARAY ◽  
María F. BABUIN ◽  
María P. CAMPESTRE ◽  
...  

The Salado River Basin region is the most important livestock breeding area inArgentina, wherethe Lotus species has been traditionally cultivated as forages.Nearly 60% of their land surface is dominated by salt-affected soils with severeconstraints for crop cultivation. In order to cope with that limitation, farmers haveutilized species such as non-native L. tenuis (ex- Lotus glaber), which shows a verygood adaptation. As a result, inter-seeding of L. tenuis has been proposed as astrategy of choice for improving forage production in marginal areas. The increasein soil quality by these means is achieved by an increment of the organic mattercontent, improvement of soil fertility as well as microbial biodiversity. Thus, theintroduction of L. tenuis and/or other Lotus genotypes could have enormousbenefits for similar constrained lands around the world. We are developing anintegrated analysis of the changes that occur in soils under legume production. Wewill not only analyze the microbial diversity associated, but also soil physical andchemical characteristics and the impact of different legume-microbes associationon mitigation of GHG emissions. In addition, we are identifying the main geneticdeterminants associated with interesting agronomic traits such as plant toleranceagainst biotic and abiotic stresses and the content of condensed tannins. Our futureand present research will build a solid base for the improvement of agronomicallyimportantspecies and the development of better strategies for the management ofconstrained lands such as the lowlands in the Argentinean Pampas.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2787
Author(s):  
Xin Jin ◽  
Yanxiang Jin ◽  
Xufeng Mao ◽  
Jingya Zhai ◽  
Di Fu

Vegetation change in arid areas may lead to the redistribution of regional water resources, which can intensify the competition between ecosystems and humans for water resources. This study aimed to accurately model the impact of vegetation change on hydrological processes in an arid endorheic river watershed undergoing revegetation, namely, the middle and lower reaches of the Bayin River basin, China. A LU-SWAT-MODFLOW model was developed by integrating dynamic hydrological response units with a coupled SWAT-MODFLOW model, which can reflect actual land cover changes in the basin. The LU-SWAT-MODFLOW model outperformed the original SWAT-MODFLOW model in simulating the impact of human activity as well as the leaf area index, evapotranspiration, and groundwater table depth. After regional revegetation, evapotranspiration and groundwater recharge in different sub-basins increased significantly. In addition, the direction and amount of surface-water–groundwater exchange changed considerably in areas where revegetation involved converting low-coverage grassland and bare land to forestland.


2015 ◽  
Vol 12 (6) ◽  
pp. 5749-5787 ◽  
Author(s):  
W. Zhan ◽  
M. Pan ◽  
N. Wanders ◽  
E. F. Wood

Abstract. Rainfall and soil moisture are two key elements in modeling the interactions between the land surface and the atmosphere. Accurate and high-resolution real-time precipitation is crucial for monitoring and predicting the on-set of floods, and allows for alert and warning before the impact becomes a disaster. Assimilation of remote sensing data into a flood-forecasting model has the potential to improve monitoring accuracy. Space-borne microwave observations are especially interesting because of their sensitivity to surface soil moisture and its change. In this study, we assimilate satellite soil moisture retrievals using the Variable Infiltration Capacity (VIC) land surface model, and a dynamic assimilation technique, a particle filter, to adjust the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) real-time precipitation estimates. We compare updated precipitation with real-time precipitation before and after adjustment and with NLDAS gauge-radar observations. Results show that satellite soil moisture retrievals provide additional information by correcting errors in rainfall bias. High accuracy soil moisture retrievals, when merged with precipitation, generally increase both rainfall frequency and intensity, and are most effective in the correction of rainfall under dry to normal surface condition while limited/negative improvement is seen over wet/saturated surfaces. Errors from soil moisture, mixed among the real signal, may generate a false rainfall signal approximately 2 mm day−1 and thus lower the precipitation accuracy after adjustment.


2018 ◽  
Vol 19 (3) ◽  
pp. 762-770 ◽  
Author(s):  
Chun-fang Yue ◽  
Qing-jie Wang ◽  
Yi-zhen Li

Abstract Water resources allocation decision-making in an arid region should consider the interaction of the economy, the environment, society, resources and other factors. In this paper, an index system for the comprehensive evaluation of water resources allocation in arid areas is established in response to the shortage of water resources, over-utilization of groundwater, and an unreasonable structure of agricultural water demand in the arid region of northwest China. It has been formulated based on current river basin water resources allocation practices and consideration of the fairness, efficiency and resource utilization rationality of water resources allocation. The projection tracking dynamic clustering approach was applied to analyze alternative water resource allocation schemes in the Kiz River Basin. It is concluded that the evaluation results demonstrate the following. (1) The PPDC model takes the actual measured value of the index as the basis for comprehensive evaluation, and it avoids the bias caused by the subjective formulation of weights. An optimal allocation scheme that has higher annual comprehensive benefits can better serve regional water resources management. (2) A projection pursuit dynamic cluster approach can deliver results which are more objective and reliable than existing evaluation approaches for water resources allocation. (3) Grey correlation analysis and projection tracking dynamic clustering are basically consistent with the evaluation results for water resources allocation in the Kiz River Basin. This suggests that the projection pursuit dynamic cluster is suitable for the evaluation of water resources allocation schemes.


2005 ◽  
Vol 83 (6) ◽  
pp. 935-942 ◽  
Author(s):  
Yanbo SHEN ◽  
Zhibao SHEN ◽  
Mingyuan DU ◽  
Wanfu WANG

Author(s):  
N. I. Koronkevich ◽  
K. S. Melnik

Global urban landscapes were growing rapidly during last decades. The impact of this growth on annual river runoff of foreign European and Russian river basins was shown in this article. Calculations for Moscow river basin were taken as a basis for computations. The performed calculations show, that 1% of urbanization area increase also enhances total river runoff at 1%. At the same time 1% growth of watertight territories (included in urbanized landscapes) leads to an increase in runoff by 2–3%. The growth of urbanized areas led to a smaller increase in runoff (2–3 times) in the past (in comparison with current period) due to a less established system of diversion from urbanized landscapes. Calculations were made for Spree, Thames, Seine river basins in comparison Moscow River basin. Impact of capitals landscapes (Berlin, London, Paris, and Moscow) on river runoff was estimated initially, and then the influence of other urbanized areas located in river basins. As a result, the general influence of all urbanized territories was defined. According to results of conducted calculations, modern urbanized areas led to an increase of annual river runoff by more than 9% in Spree river basin, more than 20% of the Thames, over 11% of the Seine and 10% in the basin of Moscow River in comparison with changes during the period of norm calculation (from the end of 19th century till the beginning of the 1960s of the 20th century). According to the results of conducted calculations, modern total annual runoff increase is 2.2–4.5% for Europe and 0.2–0.3% for the Russian Federation in comparison with changes during the period of norm calculation, and in relation to the runoff from the most populated their parts is 3.5-6.9% and 1-2%, respectively. In addition, it can be expressed in km3 with following values: 44.9–89.8 (for foreign Europe) and 7.2–14.3 (for the Russian Federation). For the whole Europe (including European territory of Russia), the runoff increases by 50–100 km3 (or by 2–4%) per year. Actually, this is not so much in percentage terms, though in terms of volume – these values are close to annual runoff of such river as Neva.


2020 ◽  
Author(s):  
Rongrong Li

<p>The hydrological series can no longer meet the stationarity hypothesis due to the influence of climate variability and human activities. The process of runoff and sediment load changed significantly under a changing environment. Analyzing the variations of runoff and sediment load and exploring the main influencing causes leading to their changes will be of great help to understand the dynamic process of water and sediment in river basin. Many studies have considered the effects of rainfall and reservoir on the downstream runoff or sediment: the impact of rainfall on runoff or sediment load is normally performed by comparing the statistical characteristics before and after an extreme weather event (e.g. heavy rain of the Yangtze river in 1998); the effect of reservoirs is usually determined by comparing the pre-dam and post-dam frequencies of runoff or sediment load. In this study, the major influencing factors of annual runoff and sediment load in Wujiang River basin were identified firstly based on the results of trend analysis and change-point diagnosis for runoff and sediment load. Then, Generalized Addictive Models in Location, Scale, and Shape (GAMLSS) is used to describe the rainfall and reservoir impacts on nonstationarity of runoff and sediment load, in which, distribution parameters (including the location, scale and shape parameter) are expressed as a function of the explanatory variables. The results show that: (1) runoff and sediment load of Wujiang River decrease with the intensification of climate change and human activities; (2) runoff is mainly affected by rainfall, the operation of cascade reservoirs has critical effect on the sediment load; (3) the correlation between runoff and sediment closely related to the nonstationarity of sediment load, namely, the sediment load change can directly lead to the alteration of dependence between runoff and sediment.</p>


Sign in / Sign up

Export Citation Format

Share Document