scholarly journals LOTUS spp: BIOTECHNOLOGICAL STRATEGIES TO IMPROVE THE BIOECONOMY OF LOWLANDS IN THE SALADO RIVER BASIN (ARGENTINA)

AGROFOR ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Cristian J. ANTONELLI ◽  
Pablo I. CALZADILLA ◽  
Francisco J. ESCARAY ◽  
María F. BABUIN ◽  
María P. CAMPESTRE ◽  
...  

The Salado River Basin region is the most important livestock breeding area inArgentina, wherethe Lotus species has been traditionally cultivated as forages.Nearly 60% of their land surface is dominated by salt-affected soils with severeconstraints for crop cultivation. In order to cope with that limitation, farmers haveutilized species such as non-native L. tenuis (ex- Lotus glaber), which shows a verygood adaptation. As a result, inter-seeding of L. tenuis has been proposed as astrategy of choice for improving forage production in marginal areas. The increasein soil quality by these means is achieved by an increment of the organic mattercontent, improvement of soil fertility as well as microbial biodiversity. Thus, theintroduction of L. tenuis and/or other Lotus genotypes could have enormousbenefits for similar constrained lands around the world. We are developing anintegrated analysis of the changes that occur in soils under legume production. Wewill not only analyze the microbial diversity associated, but also soil physical andchemical characteristics and the impact of different legume-microbes associationon mitigation of GHG emissions. In addition, we are identifying the main geneticdeterminants associated with interesting agronomic traits such as plant toleranceagainst biotic and abiotic stresses and the content of condensed tannins. Our futureand present research will build a solid base for the improvement of agronomicallyimportantspecies and the development of better strategies for the management ofconstrained lands such as the lowlands in the Argentinean Pampas.

2012 ◽  
Vol 43 (1-2) ◽  
pp. 14-22 ◽  
Author(s):  
Chuanguo Yang ◽  
Zhongbo Yu ◽  
Zhenchun Hao ◽  
Jiangyun Zhang ◽  
Jianting Zhu

The impact of climate change on floods and droughts in Huaihe River Basin is studied using a coupled land-surface hydrology model and continuous wavelet transform technique. Observed temperature in the basin has increased by approximately 0.228 °C per decade since 1951. Observed precipitation and simulated and observed streamflows are used to grade flood and drought events. Two composite grading indices derived from the three series using different weight values are defined for reducing uncertainties caused by errors of observation and simulation and the effect of human activity on observed streamflow. The frequency of flood and drought events is quantified using the Morlet wavelet transform and compared with the trend of average temperature to test for any relationship between climate change and flood/drought frequency. This study shows that flood and drought events have occurred more frequently since the 1980s. The trend of flood and drought events is positively related to climate warming with a coefficient of determination of 0.88 in the Huaihe River Basin.


2020 ◽  
Author(s):  
Shaini Naha ◽  
Miguel A. Rico-Ramirez ◽  
Rafael Rosolem

Abstract. Several research studies have addressed the effects of future climate changes on the hydrological regime of Mahanadi river basin located in eastern part of India. However, studies investigating the effects of future land cover changes on hydrology are limited owing to the lack of availability of projected land cover scenarios. Our study investigates how the hydrology of Mahanadi river basin would respond to the current and future land cover scenarios under a large-scale hydrological modelling framework. Both historical and future land cover scenarios from the recently released, Land use Harmonisation (LUH2) project for CMIP6, indicates cropland and forest are the major land cover types in the basin with a noticeable increase in the cropland (23.3 %) at the expense of forest (22.65 %) by the end of year 2100 compared to the baseline year, 2005. A physically semi-distributed model, the Variable Infiltration Capacity has been set up and implemented over the Mahanadi river basin system for the time period 1990–2010. The uncertain model parameters were subjected to Sensitivity Analysis and calibrated within a Monte Carlo framework. The best set of calibrated models obtained is used in conjunction with the harmonized set of present and future land use scenarios from LUH2 at 25 km by 25 km resolution to generate an ensemble of model simulations that captures a range of plausible impacts of land cover changes on discharge and other hydrological components of the basin. Overall, model simulation results indicate an increase in the extreme flows (i.e., 95th percentile or higher) in the range of 0.12 to 21 % at multiple subcatchments within the basin. This increase can be attributed to the direct conversion of forested areas to agriculture (on the order of 30,000 km2) that has reduced the Leaf Area Index and subsequently reduces the Evapotranspiration (ET). These changes ultimately affect other water balance components at the land surface, resulting in an increase in surface runoff and baseflow, respectively.


Author(s):  
Jouni Heiskanen ◽  
Christian Brümmer ◽  
Nina Buchmann ◽  
Carlo Calfapietra ◽  
Huilin Chen ◽  
...  

AbstractSince 1750, land use change and fossil fuel combustion has led to a 46 % increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limiting global temperature increases to well below 2°C above pre-industrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere is sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3062
Author(s):  
Muattar Saydi ◽  
Guoping Tang ◽  
Hong Fang

Understanding the main drivers of runoff availability has important implications for water-limited inland basins, where snow and ice melt provide essential input to the surface runoff. This paper presents an analysis on the runoff response to changes in climatic and other controls of water-energy balance in an inland glacierized basin, the Urumqi River basin, located in the arid region of northwest China, and identifies the major control to which runoff is sensitive across the basin’s heterogeneous subzones. The results indicate that the runoff is more sensitive to change in precipitation in the mountainous headwaters zone of the upper reach, and followed by the impact of basin characteristics. In contrast, the runoff is more sensitive to changes in the basin characteristics in the semiarid and arid zones of the mid and lower reaches. In addition, the change in basin characteristics might be represented by the distinct glacier recession in the mountainous upper reach zone and the increasing human interferences, i.e., changes in land surface condition and population growth, across the mid and lower reach zones. The glacier wasting contributed around 7% on average to the annual runoff between 1960 and 2012, with an augmentation beginning in the mid-1990s. Findings of this study might help to better understand the possible triggers of streamflow fluctuation and the magnitude of glacier wasting contribution to runoff in inland glacierized river basins.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 245-252 ◽  
Author(s):  
C S Sinnott ◽  
D G Jamieson

The combination of increasing nitrate concentrations in the River Thames and the recent EEC Directive on the acceptable level in potable water is posing a potential problem. In assessing the impact of nitrates on water-resource systems, extensive use has been made of time-series analysis and simulation. These techniques are being used to define the optimal mix of alternatives for overcoming the problem on a regional basis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenyang Liao ◽  
Xunxiao Zhang ◽  
Shengcheng Zhang ◽  
Zhicong Lin ◽  
Xingtan Zhang ◽  
...  

Abstract Background Structural variations (SVs) are a type of mutations that have not been widely detected in plant genomes and studies in animals have shown their role in the process of domestication. An in-depth study of SVs will help us to further understand the impact of SVs on the phenotype and environmental adaptability during papaya domestication and provide genomic resources for the development of molecular markers. Results We detected a total of 8083 SVs, including 5260 deletions, 552 tandem duplications and 2271 insertions with deletion being the predominant, indicating the universality of deletion in the evolution of papaya genome. The distribution of these SVs is non-random in each chromosome. A total of 1794 genes overlaps with SV, of which 1350 genes are expressed in at least one tissue. The weighted correlation network analysis (WGCNA) of these expressed genes reveals co-expression relationship between SVs-genes and different tissues, and functional enrichment analysis shows their role in biological growth and environmental responses. We also identified some domesticated SVs genes related to environmental adaptability, sexual reproduction, and important agronomic traits during the domestication of papaya. Analysis of artificially selected copy number variant genes (CNV-genes) also revealed genes associated with plant growth and environmental stress. Conclusions SVs played an indispensable role in the process of papaya domestication, especially in the reproduction traits of hermaphrodite plants. The detection of genome-wide SVs and CNV-genes between cultivated gynodioecious populations and wild dioecious populations provides a reference for further understanding of the evolution process from male to hermaphrodite in papaya.


Sign in / Sign up

Export Citation Format

Share Document