scholarly journals Distributed-Framework Basin Modeling System: IV. Application in Taihu Basin

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 611
Author(s):  
Gang Chen ◽  
Chuanhai Wang ◽  
Xing Fang ◽  
Xiaoning Li ◽  
Pingnan Zhang ◽  
...  

This paper presents the application of a distributed-framework basin modeling system (DFBMS) in Taihu Basin, China. The concepts of professional modeling systems and system integration/coupling have been summarized in the first three series papers. This study builds a hydrologic and hydrodynamic model for Taihu Basin, which is in the lowland plain areas with numerous polder areas. Digital underlying surface area data agree with the survey results from the water resource development and utilization. The runoff generated in each cell was calculated with the model based on the digital underlying surface data. According to the hydrological feature units (HFU) concept from the DFBMS, Taihu Basin was conceptualized into six different HFUs. The basic data of rainfall, evaporation, water surface elevation (WSE), discharge, tide level, and water resources for consumption and discharge in 2000 were used to calibrate the model. The simulated results of WSE and discharge matched the observed data well. The observed data of 1998, 1999, 2002, and 2003 were used to validate the model, with good agreement with the simulation results. Finally, the basic data from 2003 were used to simulate and evaluate the management scheme of water diversion from the Yangtze River to Taihu Lake. Overall, the DFBMS application in Taihu Basin showed good performance and proved that the proposed structure for DFBMS was effective and reliable.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 744
Author(s):  
Gang Chen ◽  
Wenjuan Hua ◽  
Xing Fang ◽  
Chuanhai Wang ◽  
Xiaoning Li

A distributed-framework hydrologic modeling system (DF-HMS) is a primary and significant component of a distributed-framework basin modeling system (DFBMS), which simulates the hydrological processes and responses after rainfall at the basin scale, especially for non-homogenous basins. The DFBMS consists of 11 hydrological feature units (HFUs) involving vertical and horizontal geographic areas in a basin. Appropriate hydrologic or hydraulic methods are adopted for different HFUs to simulate corresponding hydrological processes. The digital basin generation model is first developed to determine the essential information for hydrologic and hydraulic simulation. This paper mainly describes two significant HFUs contained in the DF-HMS for hydrologic modeling: Hilly sub-watershed and plain overland flow HFUs. A typical hilly area application case study in the Three Gorges area is introduced, which demonstrates DF-HMS’s good performance in comparison with the observed streamflow at catchment outlets.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1091 ◽  
Author(s):  
Lejun Ma ◽  
Xingnan Zhang ◽  
Huan Wang ◽  
Changjun Qi

Water and flow reductions in the channels downstream of water storage and hydropower projects have significant impacts on aquatic ecosystems. Understanding and analyzing the ecosystem status is of great significance to facilitate the protection of riverine ecosystems. A database was established based on the 2000–2017 environmental impact assessment (EIA) reports on water storage and hydropower projects in China, and corresponding analysis software was built based on an ArcGIS spatial analysis platform. The projects in China are mainly found in the Yangtze and Pearl River basins and in south-western China. The hydropower projects have a larger influence than the water storage projects on the flow of downstream rivers sections, and most of the hydropower projects, especially the water diversion projects, cause flow reductions in the downstream rivers. An ecological flow management mechanism in China implemented in 2006 provided a promising method to alleviate river flow reductions. However, there is still only one kind of ecological flow calculation method and few ecological flow regulation measures in use. Based on the advantages and problems of the existing ecological flow management system, this paper proposes a management scheme based on a regional-engineering calculation method. The results can facilitate decision making in ecological flow management.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 678 ◽  
Author(s):  
Chuanhai Wang ◽  
Wenjuan Hua ◽  
Gang Chen ◽  
Xing Fang ◽  
Xiaoning Li

To better simulate the river basin hydrological cycle and to solve practical engineering application issues, this paper describes the distributed-framework basin modeling system (DFBMS), which concatenate a professional hydrological model system, a geographical integrated system, and a database management system. DFBMS has two cores, which are the distributed-frame professional modeling system (DF-PMS) and the double-object sharing structure (DOSS). An area/region that has the same mechanism of runoff generation and/or movement is defined as one type of hydrological feature unit (HFU). DF-PMS adopts different kinds of HFUs to simulate the whole watershed hydrological cycle. The HFUs concept is the most important component of DF-PMS, enabling the model to simulate the hydrological process with empirical equations or physical-based submodules. Based on the underlying source code, the sharing uniform data structure, named DOSS, is proposed to accomplish the integration of a hydrological model and geographical information system (GIS), which is a new way of exploring temporal GIS. DFBMS has different numerical schemes including conceptual and distributed models. The feasibility and practicability of DFBMS are proven through its application in different study areas.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1584
Author(s):  
Sonia Alice George ◽  
Steffie Maria Stephen ◽  
Arunita Jaekel

A vehicular ad hoc network (VANET) consists of vehicles, roadside units, and other infrastructures that communicate with each other with the goal of improving road safety, reducing accidents, and alleviating traffic congestion. For safe and secure operation of critical applications in VANET, it is essential to ensure that only authenticated vehicles can participate in the network. Another important requirement for VANET communication is that the privacy of vehicles and their users must be protected. Privacy can be improved by using pseudonyms instead of actual vehicle identities during communication. However, it is also necessary to ensure that these pseudonyms can be linked to the real vehicle identities if needed, in order to maintain accountability. In this paper, we propose a new blockchain-based decentralized pseudonym management scheme for VANET. This allows the vehicles to maintain conditional anonymity in the network. The blockchain is used to maintain a record of each vehicle and all of its pseudo-IDs. The information in the blockchain can only be accessed by authorized entities and is not available to all vehicles. The proposed distributed framework maintains an immutable record of the vehicle data, which is not vulnerable to a single point of failure. We compared the performance of the proposed approach with a traditional PKI scheme and shown that it significantly reduces the authentication delay.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 649
Author(s):  
Xiaoning Li ◽  
Chuanhai Wang ◽  
Gang Chen ◽  
Xing Fang ◽  
Pingnan Zhang ◽  
...  

A distributed-framework basin modeling system (DFBMS) was developed to simulate the runoff generation and movement on a basin scale. This study is part of a series of papers on DFBMS that focuses on the hydraulic calculation methods in runoff concentration on underlying surfaces and flow movement in river networks and lakes. This paper introduces the distributed-framework river modeling system (DF-RMS) that is a professional modeling system for hydraulic modeling. The DF-RMS contains different hydrological feature units (HFUs) to simulate the runoff movement through a system of rivers, storage units, lakes, and hydraulic structures. The river network simulations were categorized into different types, including one-dimensional river branch, dendritic river network, loop river network, and intersecting river network. The DF-RMS was applied to the middle and downstream portions of the Huai River Plain in China using different HFUs for river networks and lakes. The simulation results showed great consistency with the observed data, which proves that DF-RMS is a reliable system to simulate the flow movement in river networks and lakes.


2021 ◽  
Vol 2 (4) ◽  
pp. 1095-1101
Author(s):  
Sri Mulyani ◽  
Mohammad Fakry Gaffar ◽  
Aan Komariah ◽  
Suryadi ◽  
Ade Suhendar ◽  
...  

The Academic Management System of Higher Education is a component of the Institutional Management System of Higher Education, which is concerned with the overall management tools that have been designed and compiled in a systematic and rigorous manner. Nowadays, as technology advances and student generations change, educational institutions are encouraged to continually respond to the use of technology in their service systems. The aim of this thesis is to identify and interpret research results relating to academic management system alignment. A descriptive qualitative approach is used in this research. According to the findings of the study, while universities do have an institutional management scheme in place, its execution is not optimal. Universities do have an Academic Management System in place, but it is not yet fully implemented. The academic Management System also has some elements missing, such as academic calendar scheduling, new student placement, new and old student enrollment, classes, grading, thesis instruction, and graduation. Keywords: Academic Management System, Technology, universities.


Author(s):  
Zhibing Hu ◽  
Pang Yong ◽  
Xu Ruichen ◽  
Liu Yuan

Abstract The purpose of this study is to quantify the proportion and flow path of the water diversion from Yangtze River (YRD) into Taihu Lake. Based on the analysis of rainfall and data of Taihu basin in recent 30 years, a 1-D hydrodynamic model of main inflow river network area of Taihu basin was constructed, coupled the convection-diffusion model with conservative material, the characteristics of YRD and the water inflow into Taihu Lake (WITL) in three typical years were calculated. The results show that the YRD has shown a significant upward trend in the past 30 years, accounting for 26.4, 35.6 and 42% of the total WITL in three typical years of wet, normal and dry respectively. From the perspective of space, Taige River is the largest river in the western part of the lake that is affected by the river diversion (35%–72%), and Wuxi River is the smallest (1–3%). In addition, the primary flow path of YRD to Taihu Lake was through the Wuyi River and Lake Gehu from the water diversion station west of the Zao River.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1939
Author(s):  
Xiaomin Chang ◽  
Shaoli Wang ◽  
Zhanyi Gao ◽  
Haorui Chen ◽  
Xiaoyan Guan

Water shortage and soil salinization are the main issues threatening the sustainable development of agriculture and ecology in the Hetao Irrigation District (HID). The application of water-saving practices is required for sustainable agricultural development. However, further study is required to assess the effects of these practices on water and salt dynamics in the long term. In this study, the impacts of different water-saving practices on water and salt dynamics were investigated in the HID, Northwest China. The SAHYSMOD (integrated spatial agro-hydro-salinity model) was used to analyze the water and salt dynamics for different water-saving irrigation scenarios. The results indicate that the SAHYSMOD model shows a good performance after successful calibration (2007–2012) and validation (2013–2016). The soil salinity of cultivated land in the middle and upper reaches of the irrigation district decreased slightly, while that in the lower reaches increased significantly over the next 10 years under current irrigation and drainage conditions. It is predicted that if the amount of water diverted is reduced by up to 15%, the maximum water-saving volume could reach 650 million m3 yr–1. For the fixed reduction rate of total water diversion, the prioritized measure should be given to reduce the amount of field irrigation quota, and then to improve the water efficiency of the canal system. Although a certain amount of water can be saved through various measures, the effect of water saving in the irrigation district should be analyzed comprehensively, and the optimal water management scheme should be determined by considering the ecological water requirement in the HID.


Author(s):  
Juan Wu ◽  
Hejuan Lin ◽  
Zhiyong Wu ◽  
Song Jin ◽  
Jian Wu ◽  
...  

Abstract. As one of the most developed regions in China, hydrological process of Taihu basin was influenced under rapid development of urbanization. Based on original gauge data and water stage correction data from Bureau of Hydrology, variability in precipitation and water stage was investigated by Mann–Kendall test. The results demonstrated that: (1) The highest water stage (HWS), lowest water stage (LWS), average water stage (AWS) of all months had increasing trends, especially significantly in non-flood season. The LWS also increased significantly in May, July, September, and November, while the AWS increased significantly in September and November. (2) Water diversion from Yangtze River to Taihu Basin and supplying to the downstream, had strong effects on water stage increase of Taihu Lake. Finally, recommendations based on the correlation between precipitation and water stage was proposed to protect effective utilization of water resources from the impacts of rapid urbanization.


2021 ◽  
Vol 826 (1) ◽  
pp. 012027
Author(s):  
Ren Minglei ◽  
Fu Xiaodi ◽  
Ding Liuqian ◽  
Wang Gang ◽  
Kan Guangyuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document