scholarly journals Effects of Zeolitic Urea on Nitrogen Leaching (NH4-N and NO3-N) and Volatilization (NH3) in Spodosols and Alfisols

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1921
Author(s):  
Ayaz Ahmad ◽  
Shahzada Sohail Ijaz ◽  
Zhenli He

Global use of urea nitrogen (N) fertilizer is increasing, but N losses are still very high (40–70%). Zeolites have the capability of holding NH4+, thus reducing N losses when applied as a soil amendment. However, application of a large quantity of zeolite is costly and inconvenient. In this study, zeolitic fertilizers were evaluated to select the best formulation with reduced leaching of NH4-N and NO3-N and NH3 volatilization in agricultural soils (Alfisol and Spodosol). The treatments included the following: T0 = control, T1 = urea fertilizer, T2 = zeo-urea (1:1), T3 = zeo-urea (2:1), T4 = zeo-urea (3:1), T5 = zeo-urea (1:2), and T6 = zeo-urea (1:3). Leaching was performed at 4, 8, 12, 19, 25, 32, 39 and 45 days after the soils were treated with the designated fertilizers, including control, and packed into columns. Leachate samples were collected after each leaching event and analyzed for the concentrations of NH4-N and NO3-N and the quantity of leachate. Ammonia volatilization was recorded at days 1, 5, 9, 13 and 20 of soil treatments. Results indicate that zeolitic fertilizer formulations effectively reduced N losses. NH4-N loss was reduced by 13% and 28% by zeo-urea (1:1) in Alfisol and Spodosol soils, respectively, whereas zeo-urea (2:1) and zeo-urea (3:1) effectively decreased NO3-N leaching in Alfisol. Volatilization loss of NH3 was reduced by 47% in Spodosol and 32% in Alfisol soil with zeo-urea (1:1) as compared with that of urea fertilizer. The results suggest that zeo-urea (1:1) is an effective fertilizer formulation for reducing N losses, especially in Alfisol, as compared with conventional urea fertilizer.

2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Saima Kalsoom Babar ◽  
Mohd Khanif Yusop ◽  
Shakeel Ahmed Babar ◽  
Aijaz Ali Khooharo

Nitrogen (N) losses from agricultural fields are commonly observed particularly from urea. The rate of urea hydrolysis is accelerated as it remains in conventional form and about 70% of applied urea losses in different forms to atmosphere. Ammonia volatilization is persuasive loss among all the losses from urea. Therefore to minimize ammonia (NH3) volatilization the micronutrient coated urea is applied to enhance N-efficiency and its uptake. This study is an application of micronutrient coated urea with zinc (Zn) and copper (Cu) for two soil series of Malaysia. A laboratory experiment was designed according to the force draft technique for trapping the NH3 loss. The results have manifested that the rate of ammonia volatilization was 16% from uncoated urea and 8% from coated urea with micronutrients during the first two weeks of observations. After the six weeks of observations it was perceived that the ammonia losses for both soil series were gradually decreased with time. The mean comparison by using Tukey’s range test has shown the positive effect of micronutrient coated urea in comparison with the conventional urea. However the urea coated with the combination of both micronutrients Cu and Zn has shown significant difference in contrast to the coating urea with single micronutrient. The overall results revealed the efficacy of micronutrient coated urea on both of the soil series to maximize N-uptake and reduce NH3 volatilization.


2001 ◽  
Vol 1 ◽  
pp. 440-448 ◽  
Author(s):  
Maria Herrmann ◽  
William E. Sharpe ◽  
David R. DeWalle ◽  
Bryan R. Swistock

Logging has been shown to induce nitrogen (N) leaching. We hypothesized that logging a watershed that previously exhibited forest decline symptoms would place additional stress on the ecosystem and result in greater N loss, compared to harvesting vigorous forests. We conducted a 10-year (1988 to 1998) assessment of N export from the Baldwin Creek watershed in southwestern Pennsylvania that was partially clearcut to salvage dead and dying northern red oak. N export from the watershed increased significantly following salvage logging operations and did not completely return to prelogging levels by the end of the study period. The largest annual NO3-N export of 13 kg/ha was observed during the first year after harvesting, an increase of approximately 10 kg/ha. Compared to data from other Appalachian Mountain watersheds in North Carolina, West Virginia, and Pennsylvania, calculated N loss for Baldwin Creek was considerably greater. Longer periods of reduced N uptake due to slow revegetation of salvage logged areas, coupled with increased amounts of N available to leaching, could have accounted for the large N losses observed for Baldwin Creek. Salvage logging of dead and dying trees from forested watersheds in this region appears to have the potential to result in much larger N losses than previously reported for harvest of healthy stands.


2014 ◽  
Vol 152 (S1) ◽  
pp. 45-56 ◽  
Author(s):  
R. M. MONAGHAN ◽  
C. A. M. DE KLEIN

SUMMARYThe need for nitrogen (N) efficiency measures for dairy systems is as great as ever if we are to meet the challenge of increasing global production of animal-based protein while reducing N losses to the environment. The present paper provides an overview of current N efficiency and mitigation options for pastoral dairy farm systems and assesses the impact of integrating a range of these options on reactive N loss to the environment from dairy farms located in five regions of New Zealand with contrasting soil, climate and farm management attributes. Specific options evaluated were: (i) eliminating winter applications of fertilizer N, (ii) optimal reuse of farm dairy effluent, (iii) improving animal performance through better feeding and using cows with higher genetic merit, (iv) lowering dietary N concentration, (v) applying the nitrification inhibitor dicyandiamide (DCD) and (vi) restricting the duration of pasture grazing during autumn and winter. The Overseer®Nutrient Budgeting model was used to estimate N losses from representative farms that were characterized based on information obtained from detailed farmer surveys conducted in 2001 and 2009. The analysis suggests that (i) milk production increases of 7–30% were associated with increased N leaching and nitrous oxide (N2O) emission losses of 3–30 and 0–25%, respectively; and (ii) integrating a range of strategic and tactical management and mitigation options could offset these increased N losses. The modelling analysis also suggested that the restricted autumn and winter grazing strategy resulted in some degree of pollution swapping, with reductions in N leaching loss being associated with increases in N loss via ammonia volatilization and N2O emissions from effluents captured and stored in the confinement systems. Future research efforts need to include farm systems level experimentation to validate and assess the impacts of region-specific dairy systems redesign on productivity, profit, environmental losses, practical feasibility and un-intended consequences.


2015 ◽  
Vol 16 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Cecílio Viega SOARES FILHO ◽  
Ulysses CECATO ◽  
Ossival Lolato RIBEIRO ◽  
Cláudio Fabrício da Cruz ROMA ◽  
Tatiane BELONI

<p>Gaseous losses are the main factors affecting the efficiency of nitrogenous fertilizers in pastures. To evaluate NH<sub>3</sub>-N volatilization losses in Tanzania grass fertilized with urea in autumn, spring and summer, a completely randomized design with repeated measurements over time and fifteen replicates was used. Plots were represented by urea levels (50; 100 and 150 kg ha<sup>-1</sup> N) and subplots by time after fertilization (1; 2; 3; 6; 9; 12 and 15 days). The interaction between fertilization leveland time after urea application was significant for the accumulated NH<sub>3</sub>-N volatilization. Urea application leads to higher percentage N losses in the first three days after application. The average cumulative NH<sub>3</sub>-N loss for the three occasions (different seasons of the year) was 28%, 20% and 16% of N applied for fertilizer doses of 50; 100 and 150 kg ha<sup>-1</sup>of N, respectively. The season of the year influenced NH<sub>3</sub>-N loss pattern and volume, with the lowest values recorded in spring, followed by summer and autumn. The cumulative NH<sub>3</sub>-N volatilization loss varies from 78 to 90% up to the third day after application of the total N-NH3 loss.</p>


2017 ◽  
Vol 52 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Ioná Rech ◽  
José Carlos Polidoro ◽  
Paulo Sérgio Pavinato

Abstract: The objective of this work was to develop urea-based fertilizers with internal incorporation of urease inhibitors and other additives in the granule. The effects of the incorporation of NBPT, copper (Cu+2), boric acid (H3BO3), elemental sulphur (Sº), and a clay mineral from the zeolite group in powder urea - with ten different combinations of these additives - were evaluated as to N losses by volatilization and leaching. The losses in laboratory-developed formulations were compared with those of commercial fertilizers coated with the same additives (Super N, FH Nitro Mais, and FH Nitro Gold). The evaluations were made in greenhouse conditions, using a Ultisol accommodated in PVC columns. Nitrate and ammonium leaching was evaluated in the solution percolated through the soil columns. Ammonia volatilization was measured with a semi-open static chamber. The incorporation of urease inhibitors (NBPT, H3BO3, and Cu+2) into the urea granules was efficient to reduce N volatilization. Ammonia volatilization in the laboratory-developed ureas was lower than in commercial fertilizers coated with the same additives, while ammonium sulfate losses by leaching were similar. The addition of zeolite does not reduce N volatilization. Mineral N leaching in the soil profile is not affected by urease inhibitors.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 684
Author(s):  
Raúl Allende-Montalbán ◽  
Diana Martín-Lammerding ◽  
María del Mar Delgado ◽  
Miguel A. Porcel ◽  
José L. Gabriel

The use of urease inhibitors in irrigated systems decreases both soil ammonium (NH4+) and nitrate (NO3−) availability, and, thus, could be an easy tool to reduce N loss due to ammonia volatilization and NO3− leaching. The main goal of this experiment was to assess the effect of urease inhibitors on N use efficiency, N losses, and their economic impact in a maize-wheat field experiment. In this study, 10 treatments were compared, combining the urea fertilizer with or without urease inhibitor, applied in one or two dressings, and under optimal or sub-optimal irrigation. A single application of urease inhibitor (IN1d), coupled with the conventional urea, helped to reduce the nitrate leaching risk both during the maize period (even when compared to the two dressing treatment) and after harvest. In addition, this improvement was achieved together with an increase in economic benefit, even when compared with the application of the same amount of regular urea split into two dressings. Under low water availability systems, the benefits of applying urease inhibitors increased with respect to the application of regular urea, making this technique a very promising strategy for adaptation to climate change in arid and semiarid regions.


2016 ◽  
Vol 96 (2) ◽  
pp. 122-135 ◽  
Author(s):  
C.F. Drury ◽  
W.D. Reynolds ◽  
G.W. Parkin ◽  
J.D. Lauzon ◽  
J.K. Saso ◽  
...  

Nitrogen (N) leaching from soil into surface and ground waters is a concern in humid areas of Canada. As a result, N management protocols, including the Ontario N Index, are widely used to identify N leaching risk, although field assessment remains limited. Nitrogen fertilizer and chloride (Cl) tracer were fall-applied to five agricultural soils in Ontario with different textures and hydrologic soil groups (HSG) to assess the Ontario N Index and characterize inorganic N movement over 1 yr. The treatments included three N rates (0, 100, and 200 kg N ha−1) plus Cl tracer and 200 kg N ha−1 rate without Cl. After spring thaw, N loss from the crop root zone (top 60 cm) ranged from 68% for Brookston clay loam to 99% for Harrow sandy loam. A strong linear relationship between apparent N recovery and apparent Cl recovery indicated that N loss from the root zone occurred primarily by downward leaching. Leaching was controlled by the minimum measured saturated hydraulic conductivity (Ksat), and good estimates of N leaching were obtained using a quasi-theoretical relationship between N loss and Ksat. We concluded that Ontario N Index estimates of N leaching risk might be improved by including site-specific measurements of Ksat.


2007 ◽  
Vol 87 (5) ◽  
pp. 485-493 ◽  
Author(s):  
Woo-Jung Choi ◽  
Scott X Chang ◽  
Jin-Hyeob Kwak ◽  
Jae-Woon Jung ◽  
Sang-Sun Lim ◽  
...  

Co-application of composted manure (compost) and urea is considered an environment-friendly fertilization practice; however, the high urease activity in compost may stimulate NH3 volatilization and cause N loss from co-applied urea. To test the above hypothesis, we investigated the fate of urea co-applied with compost in a loam-textured soil through two laboratory incubation experiments. Urea (150 mg N kg-1) was co-applied with 0, 4.9, 9.8, and 14.6 g of compost (oven-dry basis) kg-1 of soil, designated as treatments UC0, UC1, UC2, and UC3, respectively. Co-application of compost and urea enhanced urea hydrolysis and increased the 1st order rate constant of urea hydrolysis from 0.047 h-1 in the UC0 to 0.139 h-1 in the UC3 treatments. Soil pH increased from 7.0 for UC0 to 7.6 for UC3, leading to greater NH3 volatilization (up to two times more) in the soils receiving 9.8 g kg-1 or more of compost. Compost co-application also increased the immobilization of urea-derived N, probably because the organic matter added in compost stimulated microbial growth or NH4+ fixation. Between 15 and 17% of urea-N was not recovered at the end of the incubation, but there was no difference in N loss among the treatments resulting from the contrasting effects (NH3 volatilization vs. NH4+ immobilization) of compost on N losses. Our results clearly show that application of compost with high urease activity increases NH3 volatilization loss of N from the co-applied urea, but the total amount of N lost is also affected by immobilization of NH4+ by the organic matter added to the soil through the applied compost. Key words: Ammonia volatilization, nitrogen dynamics, nitrogen-15 recovery, organic carbon, urease activity


1990 ◽  
Vol 70 (1) ◽  
pp. 21-31 ◽  
Author(s):  
M. NYBORG ◽  
S.S. MALHI ◽  
E.D. SOLBERG

Previous work in north-central Alberta showed large losses of fall-applied 15N-labelled N fertilizers over the winter, but determination was not made for the summer season. The objective of the present study was to discover the amount of 15N loss during both the non-cropped winter season and during the following cropped season. Field experiments were conducted at two sites with 15N-labelled urea and potassium nitrate (KNO3) applied in early October, late October, late winter and in the spring. The 15N-labelled fertilizers at 50 kg N ha−1 were incorporated into the soil. Plots were sown to barley in spring and harvested when mature. Recovery of 15N in soil samples taken before sowing in spring indicated over-winter N losses from October-applied N at both locations and especially with KNO3. At the Breton site spring recovery of 15N in soil from the October application was 69% with urea and only 30% with KNO3. The mechanism of N loss was primarily denitrification. The amount of 15N immobilized in the soil was greater with urea than KNO3 for both sites. The total recovery of October- or late winter-applied 15N fertilizer at harvest (plants plus soil) was low, with a range of 7–71%. The recovery from spring application was near-complete at the Innisfail site (≥ 84%) but at Breton, which had heavy rain and saturated soil in late June, recovery was low with urea (56%) and especially low with KNO3 (10%). It was estimated that 8 of 45 site-years had sufficient precipitation during June to cause prolonged soil saturation and consequent N loss. In all, major losses of 15N occurred in the non-cropped over-winter period at both sites, and occurred in the cropped season at one site. Key words: Denitrification, fall application of N, leaching, 15N, 15N balance, N fertilizer, N losses, winter application of N


1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.


Sign in / Sign up

Export Citation Format

Share Document