scholarly journals Water resources of Ukraine in the XXI century under climate change scenarios (RCP4.5 AND RCP8.5)

2017 ◽  
pp. 114-122
Author(s):  
N.S. Loboda ◽  
Y.V. Bozhok

Data of climate change scenarios RCP8.5 and RCP4.5 (Representative Concentration Pathways) were used. They were proposed for consideration in the Fifth Report of Intergovernmental Panel on Climate Change. Average long-term annual flow values using meteorological data (air temperature and precipitation) from the scenarios for the period 2011-2050 were calculated. 84 points (grid nodes) uniformly distributed on the territory of Ukraine were studied. The calculations were made based on the model "climate-runoff", developed in Odessa State Environmental University. Projection of changes in water resources was given by comparing the calculation results in the past (before 1989) and in the future (2011-2050). The major trends in water resources of Ukraine were established. It is shown that by the middle of the XXI century reducing of water resources is expected on the plain territory of Ukraine (70% in the southeast). In the geographical zone of the Ukrainian Carpathians, especially in the Tisa river basin, its stability or growth is possible. Analysis of changes in the ratio of moisture and heat resources showed that climate aridity will be intensify and the insufficient moisture zone and the semiarid zone will be widen.

Author(s):  
N.S. Loboda ◽  
◽  
Y.V. Bozhok ◽  

The results of calculations of possible state of water resources within The Danube River in the XXI century were shown. This estimation was based on the model «climate-runoff», developed in Odessa State Environmental University. As the input to model data of climate scenario A1B (model REMO) were used. Average long-term annual flow values using meteorological data (air temperature and precipitation) from the scenario for different climatic periods of XXI century were calculated. 32 points (grid nodes) which were uniformly distributed over the catchment area of The Danube River were studied. Projection of changes in water resources was given by comparing the calculation results in the past (before 1989) and in the future (1990-2030, 2031-2070, 2071-2100). The major trends in climatic factors of the flow formation and water resources were established. It is shown that the climatic conditions in the XXI century on the Danube River catchment is unfavorable for the formation of runoff. The positive component of the water balance (precipitation) remains unchanged and the negative component (evaporation) increases. Isolines of norms of climatic annual flow within the whole basin were constructed. It is established that by 2030 a significant reduction of water resources will not occur; during the 2031-2070 diminution will be 17,9%; during the 2071-2100 – 22,0%. Thus, in the XXI century, changes in the water resources of the Danube will not be destructive and irreversible.


2017 ◽  
pp. 112-120
Author(s):  
N. S. Loboda ◽  
Yu. V. Bozhok

The results of calculations of possible state of water resources within The Danube River basin in the XXI century were shown. This estimation was based on the model "climate-runoff", developed in Odessa State Environmental University. As the input to model data of climate scenario A1B (model REMO) were used. Average long-term annual flow values using meteorological data (air temperature and precipitation) from the scenario for different climatic periods of  XXI century were calculated. 32 points (grid nodes) which were uniformly distributed over the catchment area of  the Danube River were studied. Projection of changes in water resources was given by comparing the calculation results in the past (before 1989) and in the future (1990-2030, 2031-2070, 2071-2100). The major trends in climatic factors of the flow formation and water resources were established. It is shown that the climatic conditions in the XXI century on the Danube River catchment is unfavorable for the formation of runoff. The positive component of the water balance (precipitation) remains unchanged and the negative component (evaporation) increases. Isolines of  norms of climatic annual flow within the whole basin were constructed. It is established that by 2030 a significant reduction of water resources will not occur; during the 2031-2070 diminution will be 17,9 %; during the 2071-2100 – 22,0 %.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


2021 ◽  
Author(s):  
Nima Shokri ◽  
Amirhossein Hassani ◽  
Adisa Azapagic

<p>Population growth and climate change is projected to increase the pressure on land and water resources, especially in arid and semi-arid regions. This pressure is expected to affect all driving mechanisms of soil salinization comprising alteration in soil hydrological balance, sea salt intrusion, wet/dry deposition of wind-born saline aerosols — leading to an increase in soil salinity. Soil salinity influences soil stability, bio-diversity, ecosystem functioning and soil water evaporation (1). It can be a long-term threat to agricultural activities and food security. To devise sustainable action plan investments and policy interventions, it is crucial to know when and where salt-affected soils occur. However, current estimates on spatio-temporal variability of salt-affected soils are majorly localized and future projections in response to climate change are rare. Using Machine Learning (ML) algorithms, we related the available measured soil salinity values (represented by electrical conductivity of the saturated paste soil extract, EC<sub>e</sub>) to some environmental information (or predictors including outputs of Global Circulation Models, soil, crop, topographic, climatic, vegetative, and landscape properties of the sampling locations) to develop a set of data-driven predictive tools to enable the spatio-temporal predictions of soil salinity. The outputs of these tools helped us to estimate the extent and severity of the soil salinity under current and future climatic patterns at different geographical levels and identify the salinization hotspots by the end of the 21<sup>st</sup> century in response to climate change. Our analysis suggests that a soil area of 11.73 Mkm<sup>2</sup> located in non-frigid zones has been salt-affected in at least three-fourths of the 1980 - 2018 period (2). At the country level, Brazil, Peru, Sudan, Colombia, and Namibia were estimated to have the highest rates of annual increase in the total area of soils with an EC<sub>e</sub> ≥ 4 dS m<sup>-1</sup>. Additionally, the results indicate that by the end of the 21<sup>st</sup> century, drylands of South America, southern and Western Australia, Mexico, southwest United States, and South Africa will be the salinization hotspots (compared to the 1961 - 1990 period). The results of this study could inform decision-making and contribute to attaining the United Nation’s Sustainable Development Goals for land and water resources management.</p><p>1. Shokri-Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resour. Res., 56, e2019WR026707. https://doi.org/ 10.1029/2019WR026707</p><p>2. Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale, Proc. Nat. Acad. Sci., 117, 52, 33017–33027. https://doi.org/10.1073/pnas.2013771117</p>


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3358
Author(s):  
Patrik Sleziak ◽  
Roman Výleta ◽  
Kamila Hlavčová ◽  
Michaela Danáčová ◽  
Milica Aleksić ◽  
...  

The changing climate is a concern with regard to sustainable water resources. Projections of the runoff in future climate conditions are needed for long-term planning of water resources and flood protection. In this study, we evaluate the possible climate change impacts on the runoff regime in eight selected basins located in the whole territory of Slovakia. The projected runoff in the basins studied for the reference period (1981–2010) and three future time horizons (2011–2040, 2041–2070, and 2071–2100) was simulated using the HBV (Hydrologiska Byråns Vattenbalansavdelning) bucket-type model (the TUW (Technische Universität Wien) model). A calibration strategy based on the selection of the most suitable decade in the observation period for the parameterization of the model was applied. The model was first calibrated using observations, and then was driven by the precipitation and air temperatures projected by the KNMI (Koninklijk Nederlands Meteorologisch Instituut) and MPI (Max Planck Institute) regional climate models (RCM) under the A1B emission scenario. The model’s performance metrics and a visual inspection showed that the simulated runoff using downscaled inputs from both RCM models for the reference period represents the simulated hydrological regimes well. An evaluation of the future, which was performed by considering the representative climate change scenarios, indicated that changes in the long-term runoff’s seasonality and extremality could be expected in the future. In the winter months, the runoff should increase, and decrease in the summer months compared to the reference period. The maximum annual daily runoff could be more extreme for the later time horizons (according to the KNMI scenario for 2071–2100). The results from this study could be useful for policymakers and river basin authorities for the optimum planning and management of water resources under a changing climate.


2008 ◽  
Vol 12 (2) ◽  
pp. 449-463 ◽  
Author(s):  
M. Posch ◽  
J. Aherne ◽  
M. Forsius ◽  
S. Fronzek ◽  
N. Veijalainen

Abstract. The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically) feasible reductions (MFR). Future climate (temperature and precipitation) was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2). The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change) and B2 results from HadAM3 (lowest predicted change). Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation) on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.


2019 ◽  
Vol 11 (17) ◽  
pp. 4764 ◽  
Author(s):  
Anna Sperotto ◽  
Josè Luis Molina ◽  
Silvia Torresan ◽  
Andrea Critto ◽  
Manuel Pulido-Velazquez ◽  
...  

With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 different combinations of a global climate model (GCM)–regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in mid- (2041–2070) and long-term (2071–2100) periods with respect to the baseline (1983–2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between different GCM–RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources.


2012 ◽  
Vol 34 (2) ◽  
pp. 51-61
Author(s):  
Leszek Kuchar ◽  
IWAŃSKI SŁAWOMIR ◽  
Leszek Jelonek ◽  
Wiwiana Szalińska

Abstract Climate change, regardless of the causes shaping its rate and direction, can have far-reaching environmental, economic and social impact. A major aspect that might be transformed as a result of climate change are water resources of a catchment. The article presents a possible method of predicting water resource changes by using a meteorological data generator and classical hydrological models. The assessment of water resources in a catchment for a time horizon of 30-50 years is based on an analysis of changes in annual runoff that might occur in changing meteorological conditions. The model used for runoff analysis was the hydrological rainfall-runoff NAM model. Daily meteorological data essential for running the hydrological model were generated by means of SWGEN model. Meteorological data generated for selected climate change scenarios (GISS, CCCM and GFDL) for the years 2030 and 2050 enabled analysing different variants of climate change and their potential effects. The presented results refer to potential changes in water resources of the Kaczawa catchment. It should be emphasized that the obtained results do not say which of the climate change scenarios is more likely, but they present the consequences of climate change described by these scenarios.


2007 ◽  
Vol 4 (5) ◽  
pp. 3209-3248 ◽  
Author(s):  
M. Posch ◽  
J. Aherne ◽  
M. Forsius ◽  
S. Fronzek ◽  
N. Veijalainen

Abstract. The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically) feasible reductions (MFR). Future climate (temperature and precipitation) was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2). The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change) and B2 results from HadAM3 (lowest predicted change). Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation) on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. Predicted changes in dissolved organic carbon induced by reductions in acid deposition or increases in temperature may potentially influence the recovery of surface waters from acidification and may offset the increase in pH resulting from S deposition reductions. However, many climate-induced changes in processes are generally not incorporated in current versions of acidification models. To allow more reliable forecasts, the mechanisms by which climate changes affect key biogeochemical processes need to be incorporated directly into process-oriented models such as MAGIC.


2015 ◽  
Vol 8 ◽  
pp. 496 ◽  
Author(s):  
Magna Soelma Beserra de Moura ◽  
Leide Dayane da Silva Oliveira ◽  
Sílvio Roberto Medeiros Evangelista ◽  
Maria Aparecida do Carmo Mouco ◽  
Luciana Sandra Bastos de Souza ◽  
...  

Este trabalho teve como objetivo analisar a aptidão climática para a cultura da manga para o clima atual e cenários futuros do IPCC (Painel Intergovernamental de Mudanças Climáticas) no Brasil. As condições climáticas ideais para a cultura da manga utilizados neste estudo foram padronizadas para o Brasil de acordo com documentos Zoneamento de Riscos Climáticos Agrícola. Para o zoneamento futuro da manga foram utilizados os dados de temperatura do ar e precipitação gerar por PRECIS e modelos ETA-CPTEC para os cenários de altas e baixas emissões de dióxido de carbono do IPCC (Painel Intergovernamental sobre Mudanças Climáticas), para as condições atuais (de base), 2025 e 2055. Foi utilizado sistema de informação geográfica para elaborar os mapas e tabelas. Os resultados indicam que pode haver reduções nas áreas apropriadas para o cultivo de manga no Brasil, considerando-se os modelos climáticos gerados pelo ETA e PRECIS. Assim, o manejo da cultura da manga deve ser adaptado para tornar possível obter produção satisfatória em cenários de baixa disponibilidade hídrica e aumento da temperatura. This work aimed to analyze the climatic aptitude for mango crop to the current climate and future IPCC (Intergovernmental Panel on Climate Change) scenarios in Brazil. The optimal climatic conditions for mango crop used in this study were standardized for Brazil according to Agricultural Zoning Climate Risk documents. For the future mango zoning was used the data of air temperature and precipitation generate by PRECIS and ETA-CPTEC models in concern to scenarios of high and low emissions of carbon dioxide of IPCC (Intergovernmental Panel on Climate Change), for current conditions (Baseline), 2025 and 2055. It was used geographic information systems to elaborate the maps and tables. The results indicate that there may be reductions in the areas suitable for the cultivation of mango in Brazil, considering the climate models generated by ETA and PRECIS. Thus, the mango crop management should be adapted to make possible obtain satisfactory production under scenarios of lower water availability and increased temperature. Keywords: Mangifera indica L., climate change, agroclimatic zoning.   


Sign in / Sign up

Export Citation Format

Share Document