scholarly journals Study of Impact of Cloud-Seeding on Intensity-Duration-Frequency (IDF) Curves of Sharjah City, the United Arab Emirates

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3363
Author(s):  
Khalid B. Almheiri ◽  
Rabee Rustum ◽  
Grant Wright ◽  
Adebayo J. Adeloye

Despite the availability of some studies related to rainfall characteristics in Sharjah city and the UAE, very few of these studies have investigated any causal link between recent cloud-seeding missions and the increasing rainfall intensities and urban floods being experienced. This study has assessed the impact of cloud-seeding operations that started in 2010 on the IDF curves of Sharjah city, The UAE. Hourly rainfall data spanning between 2010 and 2020 available at three stations, namely Sharjah Airport, Al Dhaid, and Mleiha, and provided by the National Center of Meteorology were used. To allow comparison with the pre-cloudseeding (2010) era, these records were extended back to 1992 using the much longer data available at Dubai Airport with the aid of the Self-organizing map approach. The developed IDF curves showed an apparent increase in rainfall intensities after implementing the cloud-seeding missions. In addition, the estimated mean rainfall intensities for three regions of the city were also much higher for the cloudseeded years compared to the pre-cloudseeding period. The study suggests that, while cloud-seeding provides water security benefits, its impact on urban flooding should also be carefully considered in the context of urban development plans.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yabin Sun ◽  
Dadiyorto Wendi ◽  
Dong Eon Kim ◽  
Shie-Yui Liong

AbstractThe rainfall intensity–duration–frequency (IDF) curves play an important role in water resources engineering and management. The applications of IDF curves range from assessing rainfall events, classifying climatic regimes, to deriving design storms and assisting in designing urban drainage systems, etc. The deriving procedure of IDF curves, however, requires long-term historical rainfall observations, whereas lack of fine-timescale rainfall records (e.g. sub-daily) often results in less reliable IDF curves. This paper presents the utilization of remote sensing sub-daily rainfall, i.e. Global Satellite Mapping of Precipitation (GSMaP), integrated with the Bartlett-Lewis rectangular pulses (BLRP) model, to disaggregate the daily in situ rainfall, which is then further used to derive more reliable IDF curves. Application of the proposed method in Singapore indicates that the disaggregated hourly rainfall, preserving both the hourly and daily statistic characteristics, produces IDF curves with significantly improved accuracy; on average over 70% of RMSE is reduced as compared to the IDF curves derived from daily rainfall observations.


2016 ◽  
Author(s):  
Reza Ghazavi ◽  
Ali Moafi Rabori ◽  
Mohsen Ahadnejad Reveshty

Abstract. Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormwater Management Model (SWMM). The accuracy of model simulations was confirmed based on the results of calibration. Design hyetographs in different return periods show that estimated rainfall depth via Sherman method are greater than other method except for 2-year return period. According to Ghahreman and Abkhezr method, decrease of runoff peak was 30, 39, 41 and 42 percent for 5-10-20 and 50-year return periods respectively, while runoff peak for 2-year return period was increased by 20 percent.


Author(s):  
N. Yamoat ◽  
R. Hanchoowong ◽  
S. Sriboonlue ◽  
A. Kangrang

Abstract Due to climate change, many research studies have derived the updated extreme precipitation intensity–duration–frequency relationship (IDF curve) from forecasted sub-hourly rainfall intensity time series, which is one of the most important tools for the planning and designing of hydraulic infrastructures. In this study, the IDF curves (1990–2016) of the six regions and procedures are used in accordance with those of the Royal Irrigation Department (RID)’s study (1950–1988). Each set of IDF relationships consists of 81 intensity values which are the combination of nine durations and nine return periods. The intensity ratios of this study and RID are compared. A greater-than-1 ratio indicates extreme intensity increment from the past to the present. Considering 81 ratios for each region, the number of greater-than-1 ratios for the North, Northeast, Central, East, West, and South regions are 8, 2, 31, 34, 6, and 7, respectively. These ratio numbers are far below 81 which means that the majority of extreme rainfall intensities do not increase from the past to the present. The study found that using accurate historical sub-hourly rainfall time series to create a set of IDF curves would be more reliable than using forecasted rainfall modeling.


2021 ◽  
pp. 135481662199996
Author(s):  
Ali Salman Saleh ◽  
Charbel Bassil ◽  
Arsalan Safari

Tourism in the Gulf Cooperation Council (GCC) countries has recently been considered by policymakers as a new avenue for economic diversification. Despite the considerable literature concerning the impact of tourism worldwide, only a limited number of studies have looked at the tourism sector in the GCC region or analyzed its economic, sociocultural, and environmental impacts. This article therefore conducts a systematic review of the state of the literature related to tourism in the GCC region. It provides effective insights about the current status, gaps, and challenges and proposes future research directions in this area for academics, practitioners, and policymakers with an interest in regional tourism development. The preferred reporting items for systematic reviews and meta-analyses approach was used to identify and select the papers. Some 23 papers were identified and analyzed. The majority of these studies focused on the United Arab Emirates, specifically the Dubai emirate. We found the most dominant research theme to be tourism planning.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 65
Author(s):  
Krovopuskov P ◽  
Kantaryuk E ◽  
Chernyshova M

The paper deals with the coastal tourism in Iran and the United Arab Emirates by identifying the impact of tourist attractions on the development of coastal tourism in both countries, and the role of coastal tourism (beach, landscape, etc.) in attracting tourists in the two countries. In the present study, we investigated the environmental-ecological, socio-cultural, historical-political, economic, institutional-managerial and physical-spatial dimensions of the study area. The topicality of this work is the industrial tourism development. It will allow to enhance the economic potential of the regions, increase the flow of "domestic tourists» and improve the competitiveness of enterprises in the Region. It has been studied the prospects of industrial tourism development for students of universities in Russia and directly in the Lipetsk region at the present stage of development of the machine- and lathe-building industry.  


2017 ◽  
Vol 18 (3) ◽  
pp. 968-975
Author(s):  
R. G. Silva ◽  
J. Szabo ◽  
V. Namboodiri ◽  
E. R. Krishnan ◽  
J. Rodriguez ◽  
...  

Abstract Development of greener water treatment technologies is important for the production of safe drinking water and water security applications, such as decontamination. Chlorine assisted disinfection is common and economical, but can generate disinfection byproducts (DBPs) that may be of health concern. DBPs are formed due to the reaction of chlorine with naturally occurring organic and inorganic substances in water. Currently, various innovative technologies are being developed as alternative approaches for preventing DBPs during water treatment. In this study, we evaluated the effectiveness of a novel combination of high efficiency flow filtration and UV disinfection treatment system for the removal of Bacillus globigii (B. globigii) spores in water. The filtration system consists of a charged membrane filter (CMF) that not only helps to remove suspended particles but also reduces the impact of other impurities including bio organisms. In order to get most performance details, the CMF was evaluated at clean, half-life, and end of life (EOL) conditions along with 100% UV transmittance (UVT). In addition, the effectiveness of the UV system was evaluated as a stand alone system at 100% and 70% EOL intensity. The study was conducted at the US EPA's Test and Evaluation (T&E) Facility in Cincinnati, OH, using B. globigii, a surrogate for B. anthracis spores. This non-chemical environmentally-friendly CMF/UV combination system and the stand alone UV unit showed greater than 6.0 log removal of B. globigii during the tests.


Sign in / Sign up

Export Citation Format

Share Document