scholarly journals Hydrogeochemical Assessment of Groundwater and Suitability Analysis for Domestic and Agricultural Utility in Southern Punjab, Pakistan

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3589
Author(s):  
Javed Iqbal ◽  
Chunli Su ◽  
Abdur Rashid ◽  
Nan Yang ◽  
Muhammad Yousuf Jat Baloch ◽  
...  

Groundwater is a critical water supply for safe drinking water, agriculture, and industry worldwide. In the Khanewal district of Punjab, Pakistan, groundwater has severely deteriorated during the last few decades due to environmental changes and anthropogenic activities. Therefore, 68 groundwater samples were collected and analyzed for their main ions and trace elements to investigate the suitability of groundwater sources for drinking and agricultural purposes. Principal component analysis (PCA) and cluster analysis (CA) were employed to determine the major factors influencing groundwater quality. To assess the groundwater’s appropriateness for drinking and irrigation, drinking and agricultural indices were used. The pH of the groundwater samples ranged from 6.9 to 9.2, indicating that the aquifers were slightly acidic to alkaline. The major cations were distributed as follows: Na+ > Ca2+ > Mg2+ > K+. Meanwhile, the anions are distributed as follows: HCO3− > SO42− > Cl− > F−. The main hydrochemical facies were identified as a mixed type; however, a mixed magnesium, calcium, and chloride pattern was observed. The reverse ion exchange process helps in exchanging Na+ with Ca2+ and Mg2+ ions in the groundwater system. Rock weathering processes, such as the dissolution of calcite, dolomite, and gypsum minerals, dominated the groundwater hydrochemistry. According to the Weight Arithmetic Water Quality Index (WAWQI), 50% of the water samples were unsafe for drinking. The Wilcox diagram, USSL diagram, and some other agricultural indices resulted in around 32% of the groundwater samples being unsuitable for irrigation purposes. The Khanewal’s groundwater quality was vulnerable due to geology and the influence of anthropogenic activities. For groundwater sustainability in Khanewal, management strategies and policies are required.

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 789 ◽  
Author(s):  
Aboubacar Modibo Sidibé ◽  
Xueyu Lin ◽  
Sidi Koné

In the Sahel region in Africa, and in most arid regions, groundwater is the crucial source for water supply since surface water is scarce. This study aimed to understand a complex geochemical mechanism controlling the mineralization process in the Taoudeni Basin. A thousand randomly distributed groundwater samples acquired from different aquifers were used for this research. The results show that the majority of the samples observed are of the Ca2+-Mg2+-HCO3− and Na+-HCO3− types depending on the different aquifers. Mg2+ and Ca2+ may react with HCO3− precipitating as calcite and dolomite. The Na+-HCO3− groundwater type is mainly derived from the ion exchange process. This type indicates a paleo-marine depositional environment or that it passes through paleo-marine channels. Calcium of the standard Ca2+-HCO3− groundwater type exchanges with the sodium. Groundwater is characterized by the water-rock interactions that indicate the chemical alteration of the rock-forming minerals influencing its quality by a dissolution. The δ2H and δ18O stable isotopes designate the evaporation importance in the basin and recharge with recent rain. The bicarbonate-type presence in groundwater suggests that it is young and fresh water. Multivariate statistical methods, notably Principal Component Analysis and Hierarchical Cluster Analysis, confirm affinities among the aquifers and identify three main clusters grouped into two water types. Cluster 1 consists of Infra-Cambrian and Quaternary aquifers, whereas cluster2 includes the Precambrian basement and Permian-Triassic aquifers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yunhui Zhang ◽  
Xiao Li ◽  
Ming Luo ◽  
Changli Wei ◽  
Xun Huang ◽  
...  

Groundwater is an essential resource for sustainable development, whose quality is significant for human health. In the present study, twenty-eight groundwater samples were collected from domestic tube wells and public water supply wells in the Suining area, southwestern China. The integration of statistical analysis, correlations of ions, geomodelling, and entropy-weighted water quality index (EWQI) was carried out to clarify the hydrochemistry and groundwater quality in the study area. By the statistical analysis, the cations followed the concentration order as Ca2+> Na+> Mg2+> K+, while anions’ concentrations were HCO3− > SO42− > Cl− > NO3− > F−. Piper trilinear diagram showed the hydrochemical type was characterized as Ca-HCO3. Correlations of ions and geomodelling revealed the concentrations of major ions were mainly determined by carbonate dissolution and ion exchange process, and NO3− concentrations were controlled by agriculture activities. EWQI computation demonstrated that most of the groundwater samples possessed EWQI values higher than 100. Therefore, groundwater quality is lower than the permissible limit of the World Health Organization (WHO), suitable for drinking purposes in the Suining area. Our study provides vital knowledge for groundwater management in the Suining and other similar areas.


2021 ◽  
Author(s):  
Javed Iqbal ◽  
Chunli Su

Abstract Groundwater is a vital resource for human life and economic growth. In the Khanewal district of Punjab, Pakistan, environmental changes, and anthropogenic activities have made groundwater extremely vulnerable in the past forty years. Sixty-eight groundwater samples were collected from the study area, major ions and trace elements were analyzed. The Principal Component Analysis and Cluster Analysis were used to identify the major factors influencing groundwater quality, as well as to assess its suitability for drinking and irrigation in southern Punjab. The aquifers are slightly acidic to alkaline, according to the pH (6.9–9.2) of groundwater. Significant cations are distributed as follows: Na+ > Ca2+ > Mg2+ > K+, while anions are distributed as HCO3− > SO42− > Cl−. The main hydrochemical facies are mixed Na·Ca-HCO3 and Na·Ca (Mg)-HCO3·SO4. Rock weathering processes, such as the dissolution of calcite, dolomite, and gypsum minerals, governed groundwater hydrochemistry. The water quality index (WQI) indicates that 17.64% of the water samples are unsuitable to drink. However, according to the Wilcox diagram, the USSL diagram, and some other agricultural indices, approximately 68% of the groundwater samples are suitable for irrigation.


2017 ◽  
Vol 15 (4) ◽  
pp. 644-657 ◽  
Author(s):  
M. F. El-Shahat ◽  
M. A. Sadek ◽  
W. M. Salem ◽  
A. A. Embaby ◽  
F. A. Mohamed

The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jamila Hammami Abidi ◽  
Boutheina Farhat ◽  
Abdallah Ben Mammou ◽  
Naceur Oueslati

Groundwater is among the most available water resources in Tunisia; it is a vital natural resource in arid and semiarid regions. Located in north-eastern Tunisia, the Metline-Ras Jbel-Raf Raf aquifer is a mio-plio-quaternary shallow coastal aquifer, where groundwater is the most important source of water supply. The major ion hydrochemistry and environmental isotope composition (δ18O, δ2H) were investigated to identify the recharge sources and processes that affect the groundwater salinization. The combination of hydrogeochemical, isotopic, statistical, and GIS approaches demonstrates that the salinity and the groundwater composition are largely controlled by the water-rock interaction particularly the dissolution of evaporate minerals and the ion exchange process, the return flow of the irrigation water, agricultural fertilizers, and finally saltwater intrusion which started before 1980 and which is partially mitigated by the artificial recharge since 1993. As for the stable isotope signatures, results showed that groundwater samples lay on and around the local meteoric water line LMWL; hence, this arrangement signifies that the recharge of the Ras Jbel aquifer is ensured by recent recharge from Mediterranean air masses.


2020 ◽  
pp. 73-89
Author(s):  
Kofoworola Olatunde ◽  
Modupe Sarumi ◽  
Sadiq Abdulsalaam ◽  
Babatunde Bada ◽  
Funmilola Oyebanji

Groundwater forms a very important part of the water supply chain and its quality can be affected by improperly constructed septic tanks used by homeowners in peri-urban locations such as Abeokuta in recent times. Sixty groundwater samples collected from hand-dug wells ≤15m from septic tanks were analysed for physicochemical and bacteriological parameters using standard procedures. Results were integrated with multivariate and hydrogeochemical analyses to assess the effect improperly built septic tanks have on groundwater quality around the Federal University of Agriculture, Abeokuta. The range of values for the measured parameters include: pH (6.26 – 8.66), EC (83 – 1035 μS cm-1), TDS (42 – 621 mg L-1), Mg2+ (2 – 60 mg L-1), NO3- (5.09 – 17 mg L-1), Fe (-.04 – 5.32 mg L-1), BOD (0.1 – 13.2) and E. Coli (ND – 41×10 cfu mL-1). The abundance of major ions are in the order Ca2+˃Mg2+˃K+˃ Na+ and Cl- ˃SO42- >HCO3- >NO3- ˃PO42-. The piper trilinear plot shows that the dominant hydrochemical facies in the study area is the Ca2+–Cl- type. A correlation analysis and a principal component analysis both reflect intrusions from biological wastes such as surrounding septic tanks or municipal waste disposals as well as dissolutions from basal rocks. The possibility of infiltration from sewage into groundwater is confirmed by the number of samples with high BOD, NO3-, and E. coli concentrations. Contamination of groundwater with sewage exposes the populace to acute excreta-related illness. This therefore calls for stringent monitoring and management measures to be put in place by relevant regulatory authorities to safeguard the human health and environment within the study area.


2019 ◽  
Vol 10 (1) ◽  
pp. 22-28
Author(s):  
Sanober Rafi ◽  
Owais Niaz ◽  
Sadaf Naseem ◽  
Umair Majeed ◽  
Humaira Naz

This study is aimed to evaluate the groundwater quality of Gulshan-e-Iqbal and Liaquatabad towns inKarachi. Thirty (n=30) groundwater samples were randomly collected from different locations by electrically pumpedwells at various depths (14-91m). All the water samples were analyzed to determine their suitability for drinkingpurpose based on various physicochemical parameters. Data reveal that high concentration of TDS and hardness havedeteriorated the groundwater quality of study area. The main phenomenon responsible for groundwater pollution is theseawater intrusion due to the proximity of study area to the Arabian sea. Large scale unplanned urbanization, poorwaste management and other anthropogenic activities have also triggered the deterioration of groundwater quality.Study showed that local geology plays vital role in the distribution of major cations and anions. Data suggested thatground water of this study area is highly contaminated by seawater intrusion and considered not fit for drinkingpurpose.


Geologos ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 121-136
Author(s):  
Daniel Okupny ◽  
Seweryn Rzepecki ◽  
Ryszard Krzysztof Borówka ◽  
Jacek Forysiak ◽  
Juliusz Twardy ◽  
...  

Abstract The present paper discusses the influence of geochemical properties on biogenic deposits in the Wilkostowo mire near Toruń, central Poland. The analysed core has allowed the documentation of environmental changes between the older part of the Atlantic Period and the present day (probably interrupted at the turn of the Meso- and Neoholocene). In order to reconstruct the main stages in the sedimentation of biogenic deposits, we have used stratigraphic variability of selected litho-geochemical elements (organic matter, calcium carbonate, biogenic and terrigenous silica, macro- and micro-elements: Na, K, Mg, Ca, Fe, Mn, Cu, Zn, Pb, Cr and Ni). The main litho-geochemical component is CaCO3; its content ranges from 4.1 per cent to 92 per cent. The variability of CaCO3 content reflects mainly changes in hydrological and geomorphological conditions within the catchment area. The effects of prehistoric anthropogenic activities in the catchment of the River Tążyna, e.g., the use of saline water for economic purposes, are recorded in a change from calcareous gyttja into detritus-calcareous gyttja sedimentation and an increased content of lithophilous elements (Na, K, Mg and Ni) in the sediments. Principal component analysis (PCA) has enabled the distinction the most important factors that affected the chemical composition of sediments at the Wilkostowo site, i.e., mechanical and chemical denudation processes in the catchment, changes in redox conditions, bioaccumulation of selected elements and human activity. Sediments of the Wilkostowo mire are located in the direct vicinity of an archaeological site, where traces of intensive settlement dating back to the Neolithic have been documented. The settlement phase is recorded both in lithology and geochemical properties of biogenic deposits which fill the reservoir formed at the bottom of the Parchania Canal Valley.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1193
Author(s):  
Chanhyeok Jeon ◽  
Maimoona Raza ◽  
Jin-Yong Lee ◽  
Heejung Kim ◽  
Chang-Seong Kim ◽  
...  

Under changing climate, increasing groundwater use has risen the concern for groundwater quality variations over recent years, to maintain a healthy ecosystem. The objectives were to identify trend of temporal variations in groundwater quality and its suitability for different uses in Republic of Korea. Water quality data were collected from 198 monitoring stations of Groundwater Quality Monitoring Network (GQMN), annually for the period of ten years (2008–2017). Non-parametric trend analysis of a Mann–Kendall test and Theil–Sen’s slope was done on groundwater physico-chemical data of ten years. Groundwater suitability evaluation was done for use in main sectors including domestic (drinking) and agriculture (irrigation). For drinking suitability analysis, results were compared with World Health Organization (WHO) and Korean Ministry of Environment (KME) established guidelines. For irrigation suitability evaluation, electrical conductivity (EC), Sodium Adsorption Ratio (SAR), percent of Na+, Residual Sodium Carbonate (RSC), US Salinity Laboratory (USSL), and Wilcox diagram were used. Most significantly, water type belongs to Ca-HCO3 and Ca-SO4 types, but a small proportion belongs to Na-CO3 and Na-Cl types. Approximately, 96% and 93% of groundwater samples are suitable for drinking, based on WHO and KME guidelines, respectively. Around 98% and 83% of groundwater samples are in suitable range for irrigation use, based on USSL and Wilcox diagrams, respectively.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ajay Govind Bhatt ◽  
Anand Kumar ◽  
Priya Ranjan Trivedi

AbstractThis study is conducted along the middle Gangetic floodplain, to investigate the hydrogeochemical characteristics and suitability of groundwater for irrigation and human consumptions. Altogether 65 groundwater samples were collected and analyzed for major ions and water quality parameters. pH of all the samples except 1 is found > 7, which suggests alkaline aquifer condition. Groundwater samples predominately belong to Ca-Mg-HCO3 water type followed by Na-HCO3, Mg-HCO3 and Mg-SO4 water types. Hierarchical cluster analysis (HCA) combines groundwater into two distinct groups, Group 1 is found as less mineralized as the average EC value is found 625.3 μS/cm, while it is found 1375 μS/cm for Group 2. The results of correlation analysis and PCA suggest influence of natural and anthropogenic activities on groundwater. PCA extracts four major PCs which describes 71.7% of total variance. PC1 indicates influence of both lithogenic and anthropogenic activities on groundwater quality. PC2 and PC3 infer natural factors, and PC4 suggests influence of anthropogenic activities on groundwater. Exceeding concentration of F−, Fe and Mn above WHO guidelines are found as major public health concern. WQI of all except 4 groundwater samples suggests excellent to good water quality; however, 23% of the samples are not suitable based on WPI values. Irrigation indices suggest that groundwater is mostly suitable for irrigation; however, 10.7%, 12.3% and 3% samples for RSBC, MAR and KR, respectively, exceed the recommended limits and are unsuitable for irrigation. A proper management strategy and quality assurance is recommended before groundwater consumption and use in the study area.


Sign in / Sign up

Export Citation Format

Share Document