scholarly journals Optimization of Operating Conditions and Design Parameters on Coal Ultra-Fine Grinding Through Kinetic Stirred Mill Tests and Numerical Modeling

2021 ◽  
Author(s):  
Francisco Patino

Author(s):  
Yogesh Jaluria

The mathematical and numerical modeling of twin-screw polymer extruders is examined with respect to accuracy of results and validity of the simulation. A numerical model is developed incorporating the translation region, which is similar to a single-screw extruder channel, and the intermeshing, or nip, region. The numerical modeling is carried out for steady and time-dependent operation, considering various polymeric materials like polyethylene and corn meal. A range of design parameters and operating conditions are considered. The results are evaluated in terms of the expected physical behavior of the system and compared with experimental results available in the literature to determine the accuracy of the predictions. In many cases, only qualitative comparisons are possible since the operating conditions and design parameters are not explicitly known. However, the basic trends are as expected and good quantitative comparisons with experimental data is used to validate the model. Validated numerical models can extend the domain of relevant inputs for process design and optimization.



1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-181-Pr8-188 ◽  
Author(s):  
A. Dollet ◽  
B. Caussat ◽  
J. P. Couderc


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 536
Author(s):  
Kenneth A. Goldberg ◽  
Antoine Wojdyla ◽  
Diane Bryant

New, high-coherent-flux X-ray beamlines at synchrotron and free-electron laser light sources rely on wavefront sensors to achieve and maintain optimal alignment under dynamic operating conditions. This includes feedback to adaptive X-ray optics. We describe the design and modeling of a new class of binary-amplitude reflective gratings for shearing interferometry and Hartmann wavefront sensing. Compact arrays of deeply etched gratings illuminated at glancing incidence can withstand higher power densities than transmission membranes and can be designed to operate across a broad range of photon energies with a fixed grating-to-detector distance. Coherent wave-propagation is used to study the energy bandwidth of individual elements in an array and to set the design parameters. We observe that shearing operates well over a ±10% bandwidth, while Hartmann can be extended to ±30% or more, in our configuration. We apply this methodology to the design of a wavefront sensor for a soft X-ray beamline operating from 230 eV to 1400 eV and model shearing and Hartmann tests in the presence of varying wavefront aberration types and magnitudes.



1992 ◽  
Vol 29 (3) ◽  
pp. 168-172 ◽  
Author(s):  
Kunio UCHIDA ◽  
Kunio KAMIYA ◽  
Noboru ASOH ◽  
Fumikazu IKAZAKI


Author(s):  
S. Eshati ◽  
M. F. Abdul Ghafir ◽  
P. Laskaridis ◽  
Y. G. Li

This paper investigates the relationship between design parameters and creep life consumption of stationary gas turbines using a physics based life model. A representative thermodynamic performance model is used to simulate engine performance. The output from the performance model is used as an input to the physics based model. The model consists of blade sizing model which sizes the HPT blade using the constant nozzle method, mechanical stress model which performs the stress analysis, thermal model which performs thermal analysis by considering the radial distribution of gas temperature, and creep model which using the Larson-miller parameter to calculate the lowest blade creep life. The effect of different parameters including radial temperature distortion factor (RTDF), material properties, cooling effectiveness and turbine entry temperatures (TET) is investigated. The results show that different design parameter combined with a change in operating conditions can significantly affect the creep life of the HPT blade and the location along the span of the blade where the failure could occur. Using lower RTDF the lowest creep life is located at the lower section of the span, whereas at higher RTDF the lowest creep life is located at the upper side of the span. It also shows that at different cooling effectiveness and TET for both materials the lowest blade creep life is located between the mid and the tip of the span. The physics based model was found to be simple and useful tool to investigate the impact of the above parameters on creep life.



Author(s):  
Noman Yousuf ◽  
Timothy Anderson ◽  
Roy Nates

Abstract Despite being identified nearly a century ago, the diffusion absorption refrigeration (DAR) cycle has received relatively little attention. One of the strongest attractions of the DAR cycle lies in the fact that it is thermally driven and does not require high value work. This makes it a prime candidate for harnessing low grade heat from solar collectors, or the waste heat from stationary generators, to produce cooling. However, to realize the benefits of the DAR cycle, there is a need to develop an improved understanding of how design parameters influence its performance. In this vein, this work developed a new parametric model that can be used to examine the performance of the DAR cycle for a range of operating conditions. The results showed that the cycle's performance was particularly sensitive to several factors: the rate of heat added and the temperature of the generator, the effectiveness of the gas and solution heat exchangers, the mass flowrate of the refrigerant and the type of the working fluid. It was shown that can deliver good performance at low generator temperatures if the refrigerant mass fraction in the strong solution is made as high as possible. Moreover, it was shown that a H2O-LiBr working pair could be useful for achieving cooling at low generator temperatures.



2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGRs as follows;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model can be used to propose the best tie-in location of future wells in addition to providing first-pass flow assurance indications throughout the field's life and under different network configurations. The model enabled the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime.



2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.



Author(s):  
Я.Б. Немировский ◽  
И.В. Шепеленко ◽  
С.Е. Шейкин ◽  
Ю.А. Цеханов ◽  
Ф.Й. Златопольский ◽  
...  

Разработан алгоритм и проведена оценка прочности сборных твердосплавных элементов со сплошной и дискретной рабочими поверхностями. Получены зависимости, позволяющие установить связь между конструктивными параметрами сборных деформирующих инструментов и их прочностью. Выполнены прочностные расчеты деформирующего инструмента для обработки отверстий значительного диаметра со сплошной и дискретной рабочими поверхностями. Численным моделированием, методом конечных элементов получены распределения эквивалентных напряжений в элементах инструмента и контактных напряжений по поверхности контакта твердосплавная вставка-корпус, что позволило проанализировать прочность инструмента под нагрузкой. Определены конструктивные параметры инструмента и приведены алгоритмы последовательности расчета сборных деформирующих элементов (ДЭ). Разработан алгоритм последовательности расчета сборного ДЭ для дискретного протягивания. Предложенная конструкция сборного рабочего элемента позволяет не только улучшить обрабатываемость изделия резания, но и уменьшить расход остродефицитного твердого сплава по сравнению с твердосплавным ДЭ аналогичных размеров на 6 кг. Полученные результаты можно использовать в инженерных расчетах при проектировании сборного инструмента для дискретного деформирования, а также для оценки прочности сборных инструментов, например, фрез, зенкеров, разверток при уточнении внешних нагрузок We developed an algorithm and assessed the strength of prefabricated carbide elements with solid and discrete working surfaces. We obtained dependencies that make it possible to establish a relationship between the design parameters of prefabricated deforming tools and their strength. We performed strength calculations of the deforming tool for machining holes of significant diameter with solid and discrete working surfaces. We obtained the distributions of equivalent stresses in the elements of the tool and contact stresses over the contact surface of the hard-alloy insert - body by numerical modeling, by the finite element method, which made it possible to analyze the strength of the tool under load. We determined the design parameters of the tool and here we give algorithms for the sequence of calculation of prefabricated deforming elements (DE). We developed an algorithm for the sequence of calculating the prefabricated DE for discrete broaching. The proposed design of the prefabricated working element allows not only to improve the machinability of the cutting product but also to reduce the consumption of an acutely deficient hard alloy in comparison with a hard alloy DE of similar dimensions by 6 kg. The results obtained can be used in engineering calculations when designing a prefabricated tool for discrete deformation, as well as for assessing the strength of prefabricated tools, for example, cutters, countersinks, reamers when specifying external loads



Author(s):  
Lozica Ivanović ◽  
Miloš Matejić

Gerotor pumps are well known by a compact design, simple structure and low noise level, which makes them suitable for use in the automotive industry, and especially in hydraulic systems for engine lubrication. One of the main disadvantages of gerotor pumps is the inability to adjust to wear, which significantly reduces the pump efficiency. In order to mitigate the negative effect of the inevitable wear process, this paper presents a methodology for determining the optimal combination of trochoid gears design parameters for a defined aspect. An appropriate mathematical model has been developed to analyze the effect of changes in gear design parameters in relation to maximum contact stresses, pressure changes in gerotor pump chambers and wear rate proportional factor (WRPF). Verification of the developed models was performed by realizing physical pairs of gears and laboratory experiments with simulation of pump operating conditions. The results and conclusions presented in this paper, with an emphasis on the actual work processes, bring very important perspectives for the gerotor pumps design with improved performance.



Sign in / Sign up

Export Citation Format

Share Document