Sound absorption of a thick micro-perforated panel with tapered sections

2021 ◽  
Vol 69 (4) ◽  
pp. 331-340
Author(s):  
Liyan He ◽  
Chenxi Li ◽  
Ying Hu ◽  
Haitao Wang ◽  
Qing Ran ◽  
...  

This article aims to investigate the sound absorbing properties of a thick microperforated panel (MPP) with tapered sections with finite element analysis (FEA) models. The FEA model was validated by using the measured sound absorption coefficients of a classic MPP sample and a proposed MPP sample. The FEA simulation and the experiments indicate that the tapered section can enhance the sound absorption coefficient. Moreover, the FEA model shows that the structural parameters of the tapered section can be optimized. The resonance frequency of the sound absorption coefficient moves to the high-frequency range, and the maximum sound absorption coefficient increases in three conditions, the tapered section moving toward the backing cavity, and the increase of the thickness and the bottom radius of the tapered section. Although the optimized configurations of the tapered section may vary with the structure parameters of the MPP, the tapered section can improve the sound absorbing properties of the classic MPP and could be promising in the noise and vibration engineering projects.

2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Xuezhi Zhu ◽  
Zhaobo Chen ◽  
Yinghou Jiao ◽  
Yanpeng Wang

In order to broaden the sound absorption bandwidth of a perforated panel in the low frequency range, a lightweight membrane-type resonator is installed in the back cavity of the perforated panel to combine into a compound sound absorber (CSA). Because of the great flexibility, the membrane-type resonator can be vibrated easily by the incident sound waves passing through the holes of the perforated panel. In the low frequency range, the membrane-type resonator and the perforated panel constitute a two degrees-of-freedom (DOF)-resonant type sound absorption system, which generates two sound absorption peaks. By tuning the parameters of the membrane type resonator, a wide frequency band having a large sound absorption coefficient can be obtained. In this paper, the sound absorption coefficient of CSA is derived analytically by combining the vibration equation of the membrane-type resonator with the acoustic impedance equation of the perforated panel. The influences of the parameters of the membrane-type resonator on the sound absorption performance of the CSA are numerically analyzed. Finally, the wide band sound absorption capacity of the CSA is validated by the experimental test.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5126
Author(s):  
Dhayalini Balasubramanian ◽  
Senthil Rajendran ◽  
Bhuvanesh Srinivasan ◽  
Nirmalakumari Angamuthu

The current study deals with the analysis of sound absorption characteristics of foxtail millet husk powder. Noise is one the most persistent pollutants which has to be dealt seriously. Foxtail millet is a small seeded cereal cultivated across the world and its husk is less explored for its utilization in polymer composites. The husk is the outer protective covering of the seed, rich in silica and lingo-cellulose content making it suitable for sound insulation. The acoustic characterization is done for treated foxtail millet husk powder and polypropylene composite panels. The physical parameters like fiber mass content, density, and thickness of the composite panel were varied and their influence over sound absorption was mapped. The influence of porosity, airflow resistance, and tortuosity was also studied. The experimental result shows that 30-mm thick foxtail millet husk powder composite panel with 40% fiber mass content, 320 kg/m3 density showed promising sound absorption for sound frequency range above 1000 Hz. We achieved noise reduction coefficient (NRC) value of 0.54. In view to improve the performance of the panel in low-frequency range, we studied the efficiency of incorporating air gap and rigid backing material to the designed panel. We used foxtail millet husk powder panel of density 850 kg/m3 as rigid backing material with varying air gap thickness. Thus the composite of 320 kg/m3 density, 30-mm thick when provided with 35-mm air gap and backing material improved the composite’s performance in sound frequency range 250 Hz to 1000 Hz. The overall sound absorption performance was improved and the NRC value and average sound absorption coefficient (SAC) were increased to 0.7 and 0.63 respectively comparable with the commercial acoustic panels made out of the synthetic fibers. We have calculated the sound absorption coefficient values using Delany and Bezlay model (D&B model) and Johnson–Champoux–Allard model (JCA model) and compared them with the measured sound absorption values.


2019 ◽  
Vol 8 (3) ◽  
pp. 6815-6818

Polyurethane foams are extensively used as sound absorbing materials in various automobile parts. However, the sound absorption capability of polyurethane foam ispoorin low frequency range. The advancement of technologies to develop newerpolymer composites, provide scope to develop composite polyurethane foam with better sound absorption coefficient in low frequency range. Composite foams are made with two different filler materials as crumb rubber and coconut fiber, in varying weight fraction of up to 2.0%. Density, Sound absorption coefficient, and Noise reduction, measurements were done on all polyurethane foams. The effect offiller additionsto polyurethane foams ondensity and sound absorption coefficient at low frequency are discussed.The 1.4 % crumb rubber polyurethane foam offers the best combination of low density, improved sound absorption coefficient value and noise absorption at low frequency.


2015 ◽  
Vol 773-774 ◽  
pp. 210-215
Author(s):  
Muhd Hafeez Zainulabidin ◽  
M.H.M. Yusuff ◽  
Al Emran Ismail ◽  
M.Z. Kasron ◽  
A.S.M. Kassim

This paper describes the investigation and analysis on two materials in which one material is a relatively good sound absorber at low frequency range and another is a relatively good sound absorber at high frequency range, combined together in layers to form a better sound absorber for a wider range of frequencies. The layer combinations of the materials are varied and the values of Sound Absorption Coefficient, α are measured experimentally by using impedance tubes with two microphones transfer function method according to ISO 10534-2 standard. The results obtained are compared in terms of the order of material and the number of layer combinations of materials for each sample. The orders of combinations and number of layers of combinations have significant influence on the sound absorption characteristics. The order of materials has reversed effect on Sound Absorption Coefficient, α as the number of layer combination is increased. Increase in the combination number will make the specimen performed relatively better at a wider frequency range.


2019 ◽  
Vol 9 (22) ◽  
pp. 4798 ◽  
Author(s):  
Haiqin Duan ◽  
Xinmin Shen ◽  
Fei Yang ◽  
Panfeng Bai ◽  
Xiaofang Lou ◽  
...  

The composite structure of a microperforated panel and porous metal is a promising sound absorber for industrial noise reduction, sound absorption performance of which can be improved through parameter optimization. A theoretical model is constructed for the composite structure of a microperforated panel and porous metal based on Maa’s theory and the Johnson–Champoux–Allard model. When the limited total thickness is 30 mm, 50 mm, and 100 mm respectively, dimensional optimization of structural parameters of the proposed composite structure is conducted for the optimal average sound absorption coefficient in the frequency range (2000 Hz, 6000 Hz) through a cuckoo search algorithm. Simulation models of the composite structures with optimal structural parameters are constructed based on the finite element method. Validations of the optimal composite structures are conducted based on the standing wave tube method. Comparative analysis of the theoretical data, simulation data, and experimental data validates feasibility and effectiveness of the parameter optimization. The optimal sandwich structure with an actual total thickness of 36.8 mm can obtain the average sound absorption coefficient of 97.65% in the frequency range (2000 Hz, 6000 Hz), which is favorable to promote practical application of the composite structures in the fields of sound absorption and noise reduction.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Abdul Hakim Abdullah ◽  
Afiqah Azharia ◽  
Farrahshaida Mohd Salleh

Natural fibres have been known of its good acoustic damping properties and therefore, these materials could be used as a sound insulation in many applications. The main purpose of this investigation is to analyze the sound absorption coefficient of sugarcane baggase fibre, banana fibre and its hybrid based composites under various fibre volume fractions. Bone dry test specimens of 10%, 20% and 30% fibre volume fraction were treated with sodium hydroxide (NaOH) prior to composites fabrication using polyester as binder. The pre-tested specimens were examined using scanning electron microscope and electronic analytical balance to analyze physical and dimension characteristic. The sound absorption frequencies were measured using by the two-microphone transfer function technique in the impedance tube that has a 100 mm diameter for low frequency and 28 mm for high frequency, 0 Hz to 4000 Hz respectively. The result indicated that in low and high frequency, the combination of different natural fibres produced better sound absorption coefficient rather than using the natural fibre as individual. The results also demonstrated that the higher amounts of fibre volume fraction are affecting frequencies broadening, hence promising better sound absorbing capacity. 


Author(s):  
Hidjan Hidjan ◽  
Sutanto Sutanto ◽  
Nanang Rohadi

The unique porous crystal structure of zeolite offers various important utilizations, it is one of the considerations in selecting zeolite at this study as component of composite for restraining noise. It so happens, previous experiments show that banana stem has porous structure, fibrous, high flexibility and can be applied as material for many various products including as component of acoustic material. The combination of both is alleged that it has capability in absorbing noise. This paper presents an investigation on the composite that it was synthesized of Activated Zeolite and Banana Stem Fibre in various weight for determining its sound absorption coefficient alpha (a). Activating natural zeolite was conducted by using 6M HCl in order for enlarging zeolite pores. The sound absorption coefficient was measured in the frequency range between 125 Hz up to 6000 Hz. The results show that the different weight of banana stem fibre as component of the synthesized composite affects the value of alpha and shifts the frequency area.


Sign in / Sign up

Export Citation Format

Share Document