MULTI–INERT OSCILLATORY MECHANISM

Author(s):  
I.P. POPOV

A mechanical oscillatory system with homogeneous elements, namely, with n massive loads (multi– inert oscillator), is considered. The possibility of the appearance of free harmonic oscillations of loads in such a system is shown. Unlike the classical spring pendulum, the oscillations of which are due to the mutual conversion of the kinetic energy of the load into the potential energy of the spring, in a multi–inert oscillator, the oscillations are due to the mutual conversion of only the kinetic energies of the goods. In this case, the acceleration of some loads occurs due to the braking of others. A feature of the multi–inert oscillator is that its free oscillation frequency is not fixed and is determined mainly by the initial conditions. This feature can be very useful for technical applications, for example, for self–neutralization of mechanical reactive (inertial) power in oscillatory systems.

Author(s):  
I. P. Popov ◽  

It is noted that the free harmonic vibrations of a classical pendulum are due to the mutual conversion of the kinetic energy of the load intothe potential energy of the spring. Oscillators with a different nature of energy exchange have been developed, for example, by converting the kinetic energy of a load into the energy of a magnetic field of a solenoid or the energy of an electric field of a capacitor. All these oscillatory systems and the like were a prerequisite for the creation of a biinert oscillator,in which the acceleration of one load occurs due to the braking of another, i. e. only kinetic energies are exchanged. The aim of the work is mathematical modeling of a multi-inert oscillatory mechanism. The main research methods in the framework of this work are methods of mathematical modeling and analysis. The methods used make it possible to obtain a reliable description of the studied objects. Inthe proposed multi-inert oscillator, inert bodies of mass m each carry out harmonic oscillations due to the mutual exchange of kinetic energy. The potential energy of the springs is not requiredfor this. Body vibrationsare free. A feature of a multi-inert oscillator is that the frequency of itsfree oscillations is not fixed and is determined mainly by the initial conditions. This feature can be very useful for technical applications, for example, for self-neutralization of mechanical reactive (inertial) power. n-gon, formed by inert bodies, carries out complex motion – orbital rotation around the center of coordinates and spin rotation around its axis passing through the center of the n-gon. Moreover, each load performs linear harmonic oscillations along its guide. With the arrangement of the guiding weights not in the form of a star, but in parallel to each other, the angles between the corresponding cranks must be 360/n degrees.


2009 ◽  
Vol 18 (14) ◽  
pp. 2201-2207
Author(s):  
ADAM MOSS ◽  
DOUGLAS SCOTT

Structures in the Universe grew through gravitational instability from very smooth initial conditions. Energy conservation requires that the growing negative potential energy of these structures be balanced by an increase in kinetic energy. A fraction of this is converted into heat in the collisional gas of the intergalactic medium. Using a toy model of gravitational heating, we attempt to link the growth of structure in the Universe with the average temperature of this gas. We find that the gas is rapidly heated from collapsing structures at around z ~ 10, reaching a temperature > 106 K today, depending on some assumptions of our simplified model. Before that there was a cold era from z ~ 100 to ~10 in which the matter temperature was below that of the cosmic microwave background.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
R. Ansari ◽  
F. Sadeghi ◽  
A. Alipour

This paper aims to present a thorough investigation into the mechanics of a C60 fullerene oscillating within the center of a carbon nanotube bundle. To model this nanoscale oscillator, a continuum approximation is used along with a classical Lennard–Jones potential function. Accordingly, new semianalytical expressions are given in terms of single integrals to evaluate van der Waals potential energy and interaction force between the two nanostructures. Neglecting the frictional effects and using the actual van der Waals force distribution, the equation of motion is directly solved. Furthermore, a new semianalytical formula is derived from the energy equation to determine the precise oscillation frequency. This new frequency formula has the advantage of incorporating the effects of initial conditions and geometrical parameters. This enables us to conduct a comprehensive study of the effects of significant system parameters on the oscillatory behavior. Based upon this study, the variation of oscillation frequency with geometrical parameters (length of tubes or number of tubes in bundle) and initial energy (potential energy plus kinetic energy) is shown.


2021 ◽  
Vol 57 (1) ◽  
pp. 015012
Author(s):  
Unofre B Pili ◽  
Renante R Violanda

Abstract The video of a free-falling object was analysed in Tracker in order to extract the position and time data. On the basis of these data, the velocity, gravitational potential energy, kinetic energy, and the work done by gravity were obtained. These led to a rather simultaneous validation of the conservation law of energy and the work–energy theorem. The superimposed plots of the kinetic energy, gravitational potential energy, and the total energy as respective functions of time and position demonstrate energy conservation quite well. The same results were observed from the plots of the potential energy against the kinetic energy. On the other hand, the work–energy theorem has emerged from the plot of the total work-done against the change in kinetic energy. Because of the accessibility of the setup, the current work is seen as suitable for a home-based activity, during these times of the pandemic in particular in which online learning has remained to be the format in some countries. With the guidance of a teacher, online or face-to-face, students in their junior or senior high school—as well as for those who are enrolled in basic physics in college—will be able to benefit from this work.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Vikas Rai ◽  
Sreenivasan Rajamoni Nadar ◽  
Riaz A. Khan

We report the existence of phase-coupled oscillations in a model neural system. The model consists of a group of excitatory principal cells in interaction with local inhibitory interneurons. The voltages across the membranes of excitatory cells are governed primarily by calcium and potassium ion conductivities. The number of potassium channels open at any given instant changes in accordance with a deterministic law. The time scale of this change is set by a constant which depends on midpoint potentials at which potassium and calcium currents are half-activated. The growth of mean membrane potential of excitatory principal cells is controlled by that of the inhibitory interneurons. Nonlinear oscillatory system associated with these limit cycles starting from two different initial conditions maintain a definite phase relationship. The phase-coupled oscillations in electrical activity of the neuronal cells carry together amplitude, phase, and time information for cellular signaling. This mechanism supports an energy efficient way of information processing in the central nervous system. The information content is encoded as persistent periodic oscillations represented by stable limit cycles in the phase space.


2017 ◽  
Vol 32 (1) ◽  
pp. 39-51
Author(s):  
Zayra Christine Sátyro ◽  
José Veiga

Abstract This study focuses on the quantification and evaluation of the effects of ENSO (El Niño Southern Oscillation) warm phases, using a composite of five intense El Niño episodes between 1979 – 2011 on the Energetic Lorenz Cycle for four distinct regions around the globe: 80° S – 5° N (region 1), 50° S – 5° N (region 2), 30° S – 5° N (region 3), and 30° S – 30° N (region 4), using Data from NCEP reanalysis-II. Briefly, the results showed that zonal terms of potential energy and kinetic energy were intensified, except for region 1, where zonal kinetic energy weakened. Through the analysis of the period in which higher energy production is observed, a strong communication between the available zonal potential and the zonal kinetic energy reservoirs can be identified. This communication weakened the modes linked to eddies of potential energy and kinetic energy, as well as in the other two baroclinic conversions terms. Furthermore, the results indicate that for all the regions, the system itself works to regain its stable condition.


Author(s):  
K. Elgondiyev ◽  
S. Matmuratova ◽  
V. Borodin ◽  
L. Vovk

The problem of finding the total energy of a harmonic oscillator with pulsed action at fixed moments of time is considered. Both for the case of the homogeneous equation of harmonic oscillations and for the case of the equation of harmonic oscillations in the presence of external perturbation, formulas for the total energy of the oscillatory system are obtained. The case of periodic impulse effects is analyzed. The conditions under which in this oscillatory system there are periodic modes are specified. It is shown that under the fulfillment of these conditions on the values of impulse action and external perturbation, the total energy of the vibrational system is also a periodic function of the time variable.


Sign in / Sign up

Export Citation Format

Share Document