Faculty Opinions recommendation of A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin.

Author(s):  
Piet Borst
2011 ◽  
Vol 108 (29) ◽  
pp. 11756-11765 ◽  
Author(s):  
J. H. Reiling ◽  
C. B. Clish ◽  
J. E. Carette ◽  
M. Varadarajan ◽  
T. R. Brummelkamp ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Dr. Thiyam Kiran Singh ◽  
Aastha Dhingra

Love is more than a close friendship. It acts as a major facilitator of interpersonal relationship. Love is positive in nature and leaves a positive affect on every individual. An individual in love not only feels positive but spreads positivity around. They smile, be kind to other people, behave compassionately with everyone. If the person is happy then he is likely to be psychologically and emotionally healthy. The current study aimed at understanding the relationship between love, affect and wellbeing among young females aged between 20-25 years. The study reported a significant positive relationship between love and positive affect with the significant correlation of 0.29 at 0.05 levels (p<0.05). It was also found a significant positive relationship between love and wellbeing with the significant correlation of 0.58 at 0.01 level (p<0.01). This means that people in love experience positive emotions and healthy wellbeing. The correlation between love and negative affect came out to be insignificant. The correlation turned out to be -0.13. This means that people in love do not experience negative emotions.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Joachim Kloehn ◽  
Matteo Lunghi ◽  
Emmanuel Varesio ◽  
David Dubois ◽  
Dominique Soldati-Favre

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii—previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite’s metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathan J. VanDusen ◽  
Julianna Y. Lee ◽  
Weiliang Gu ◽  
Catalina E. Butler ◽  
Isha Sethi ◽  
...  

AbstractThe forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Sign in / Sign up

Export Citation Format

Share Document