scholarly journals Low-Cost Manually Assembled Open Source Reader for Isothermal Pathogen Detection from Saliva using RT-LAMP: SARS-CoV-2 Use Case

Author(s):  
John C. Bramley ◽  
Jason E. Waligorski ◽  
Colin L. Kremitzki ◽  
Mariel J. Liebeskind ◽  
Alex L. Yenkin ◽  
...  

AbstractDistributed “Point-of-Care” or “at-Home” testing is an important component for a complete suite of testing solutions. This manuscript describes the construction and operation of a platform technology designed to meet this need. The ongoing COVID-19 pandemic will be used as the proof-of-concept for the efficacy and deployment of this platform. The technology outlined consists of a one-pot, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) chemistry coupled with a low-cost and user-assembled reader using saliva as input. This platform is readily adapted to a wide range of pathogens due to the genetic basis of the reaction. A complete guide to the construction of the reader as well as the production of the reaction chemistry are provided here. Additionally, analytical limit of detection data and the results from saliva testing of SARS-CoV-2, are presented. The platform technology outlined here demonstrates a rapid, distributed, molecular point-of-care solution for pathogen detection using crude sample input.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Xun ◽  
Stephan Thomas Lane ◽  
Vassily Andrew Petrov ◽  
Brandon Elliott Pepa ◽  
Huimin Zhao

AbstractThe need for rapid, accurate, and scalable testing systems for COVID-19 diagnosis is clear and urgent. Here, we report a rapid Scalable and Portable Testing (SPOT) system consisting of a rapid, highly sensitive, and accurate assay and a battery-powered portable device for COVID-19 diagnosis. The SPOT assay comprises a one-pot reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) followed by PfAgo-based target sequence detection. It is capable of detecting the N gene and E gene in a multiplexed reaction with the limit of detection (LoD) of 0.44 copies/μL and 1.09 copies/μL, respectively, in SARS-CoV-2 virus-spiked saliva samples within 30 min. Moreover, the SPOT system is used to analyze 104 clinical saliva samples and identified 28/30 (93.3% sensitivity) SARS-CoV-2 positive samples (100% sensitivity if LoD is considered) and 73/74 (98.6% specificity) SARS-CoV-2 negative samples. This combination of speed, accuracy, sensitivity, and portability will enable high-volume, low-cost access to areas in need of urgent COVID-19 testing capabilities.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


Biosensors ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Donggee Rho ◽  
Seunghyun Kim

An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.


2011 ◽  
Vol 57 (5) ◽  
pp. 753-761 ◽  
Author(s):  
Ulrich Y Schaff ◽  
Greg J Sommer

BACKGROUND Centrifugal “lab on a disk” microfluidics is a promising avenue for developing portable, low-cost, automated immunoassays. However, the necessity of incorporating multiple wash steps results in complicated designs that increase the time and sample/reagent volumes needed to run assays and raises the probability of errors. We present proof of principle for a disk-based microfluidic immunoassay technique that processes blood samples without conventional wash steps. METHODS Microfluidic disks were fabricated from layers of patterned, double-sided tape and polymer sheets. Sample was mixed on-disk with assay capture beads and labeling antibodies. Following incubation, the assay beads were physically separated from the blood cells, plasma, and unbound label by centrifugation through a density medium. A signal-laden pellet formed at the periphery of the disk was analyzed to quantify concentration of the target analyte. RESULTS To demonstrate this technique, the inflammation biomarkers C-reactive protein and interleukin-6 were measured from spiked mouse plasma and human whole blood samples. On-disk processing (mixing, labeling, and separation) facilitated direct assays on 1-μL samples with a 15-min sample-to-answer time, <100 pmol/L limit of detection, and 10% CV. We also used a unique single-channel multiplexing technique based on the sedimentation rate of different size or density bead populations. CONCLUSIONS This portable microfluidic system is a promising method for rapid, inexpensive, and automated detection of multiple analytes directly from a drop of blood in a point-of-care setting.


2016 ◽  
Vol 2 (3_suppl) ◽  
pp. 14s-14s
Author(s):  
Benjamin A. Katchman ◽  
Joseph T. Smith ◽  
Jennifer Blain Christen ◽  
Karen S. Anderson

Abstract 62 One of the key roadblocks limiting the transition of high-sensitivity and high-specificity point-of-care technologies from the research laboratory to wide spread use is the availability of a low-cost-high-volume manufacturing technology. This work presents a new interdisciplinary approach combining low cost commercial display manufacturing technology with programmable high density protein microarray printing technology to fabricate disposable point-of-care immunosensors with clinical level sensitivity. Our approach is designed to leverage advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2, as well as to leverage the display industry’s ability to manufacture an immense number of low cost consumer electronic products annually. For this work, we demonstrate that our new approach can offer diagnostic sensitivity at or below 10 pg/mL, which approaches the lower limit of detection of typical clinical laboratory instrumentation. Our new approach is also designed to overcome the limited analytical sensitivity of existing POC devices (>100x improved sensitivity). It also contains new capability for multiplexed biomarker detection (>10 antigens) in a single low cost POC device through an innovative disposable and scalable architecture, based on flat panel display technology. Here, we demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. This detection technology has 100 percent correlation to our current laboratory-based measurement instrumentation. AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST: Benjamin A. Katchman Patents, Royalties, Other Intellectual Property: Arizona State University Joseph T. Smith Patents, Royalties, Other Intellectual Property: Arizona State University Jennifer Blain Christen Patents, Royalties, Other Intellectual Property: Arizona State University Karen S. Anderson Stock or Other Ownership: Provista Diagnostics Consulting or Advisory Role: Provista Diagnostics Patents, Royalties, Other Intellectual Property: Arizona State University


2018 ◽  
Vol 18 (18) ◽  
pp. 1559-1574 ◽  
Author(s):  
Satakshi Hazra ◽  
Sanjukta Patra

Background: Neglected tropical diseases (NTDs) are communicable diseases caused by a group of bacteria, viruses, protozoa and helminths prevalent in more than 145 countries that affect the world’s poverty stricken populations. WHO enlists 18 NTDs amongst people living in endemic areas having inaccessibility to preventive measures. Steps to reduce the global disease burden of the NTDs need attention at multi-factorial levels. Control programmes, mass drug administrations, transmission checks, eradication surveillances and diagnoses are some of them. The foremost in this list is confirmatory diagnosis. A comprehensive summary of the innovative, high-impact, multiplexed, low-cost diagnostic tools developed in the last decade that helped to meet the needs of users can depict a holistic approach to further evaluate potential technologies and reagents currently in research. Major Advancements: A literature survey based on developing nano-biotechnological platforms to meet the diagnostic challenges in NTDs towards development of a useful point-of-care (POC) unit is reported. However, in order to pave the way for complete eradication more sensitive tools are required that are user-friendly and applicable for use in endemic and low-resource settings. There are various novel research progresses/advancements made for qualitative and quantitative measurement of infectious load in some diseases like dengue, Chagas disease and leishmaniasis; though further improvements on the specificity and sensitivity front are still awaited. Strategies to combat the problem of antimicrobial drug resistance in diagnosis of NTDs have also been put forward by various research groups and organizations. Moreover, the state-of-the-art “omics” approaches like metabolomics and metagenomics have also started to contribute constructively towards diagnosis and prevention of the NTDs. Conclusion: A concrete solution towards a single specimen based common biomarker detection platform for NTDs is lacking. Identifying robust biomarkers and implementing them on simple diagnostic tools to ease the process of pathogen detection can help us understand the obstacles in current diagnostic measures of the NTDs.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Lars D. Renner ◽  
Jindong Zan ◽  
Linda I. Hu ◽  
Manuel Martinez ◽  
Pedro J. Resto ◽  
...  

ABSTRACT An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing.


Cellulose ◽  
2020 ◽  
Vol 27 (13) ◽  
pp. 7691-7701 ◽  
Author(s):  
Anusha Prabhu ◽  
M. S. Giri Nandagopal ◽  
Prakash Peralam Yegneswaran ◽  
Hardik Ramesh Singhal ◽  
Naresh Kumar Mani

Abstract We present a high resolution, ultra-frugal printing of paper microfluidic devices using in-house paraffin formulation on a simple filter paper. The patterns printed using an office inkjet printer formed a selective hydrophobic barrier of 4 ± 1 µm thickness with a hydrophilic channel width of 275 µm. These printed patterns effectively confine common aqueous solutions and solvents, which was verified by solvent compatibility studies. SEM analysis reveals that the solvent confinement is due to pore blockage in the filter paper. The fabricated paper-based device was validated for qualitative assessment of Candida albicans (pathogenic fungi) by using a combination of L-proline β-naphthylamide as the substrate and cinnamaldehyde as an indicator. Our studies reveal that the pathogenic fungi can be detected within 10 min with the limit of detection (LOD) of 0.86 × 106 cfu/mL. Owing to its simplicity, this facile method shows high potential and can be scaled up for developing robust paper-based devices for biomarker detection in resource-limited settings. Graphic abstract


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fei Zhao ◽  
Eun Yeong Lee ◽  
Geun Su Noh ◽  
Jaehyup Shin ◽  
Huifang Liu ◽  
...  

Abstract Here, we describe a simple, universal protocol for use in nucleic acid testing-based pathogen diagnostics, which requires only hand-powered sample preparation, including the processes of pathogen enrichment and nucleic acid isolation. The protocol uses low-cost amine-functionalized diatomaceous earth with a 1-μm Teflon filter as a reaction matrix in both stages of the process, using homobifunctional imidoesters. Using a simple syringe as a pump, the capture efficiency for a large sample volume (<50 mL) was enhanced by up to 98.3%, and the detection limit was 1 CFU/mL, 100-fold better than that of common commercial nucleic acid isolation kit. This protocol can also be combined with commercialized 96-well filter plates for robust sample preparation. Our proposed system is robust, simple, low-cost, universal, and rapid (taking <20 min), and it works regardless of the ambient environment and sample pretreatment, requiring no electricity or instruments. Its benefits include the simplicity of producing its components and its ease of operation, and it can be readily integrated with other assays for point-of-care diagnostics.


Sign in / Sign up

Export Citation Format

Share Document