scholarly journals Faculty Opinions recommendation of Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry.

Author(s):  
Jens-Michael Schröder
Keyword(s):  
Author(s):  
Cheng Wang ◽  
Shaobo Wang ◽  
Daixi Li ◽  
Xia Zhao ◽  
Songling Han ◽  
...  

AbstractThe burgeoning epidemic caused by novel coronavirus 2019 (2019-nCoV) is currently a global concern. Angiotensin-converting enzyme-2 (ACE2) is a receptor of 2019-nCoV spike 1 protein (S1) and mediates viral entry into host cells. Despite the abundance of ACE2 in small intestine, few digestive symptoms are observed in patients infected by 2019-nCoV. Herein, we investigated the interactions between ACE2 and human defensins (HDs) specifically secreted by intestinal Paneth cells. The lectin-like HD5, rather than HD6, bound ACE2 with a high affinity of 39.3 nM and weakened the subsequent recruitment of 2019-nCoV S1. The cloak of HD5 on the ligand-binding domain of ACE2 was confirmed by molecular dynamic simulation. A remarkable dose-dependent preventive effect of HD5 on 2019-nCoV S1 binding to intestinal epithelial cells was further evidenced by in vitro experiments. Our findings unmasked the innate defense function of lectin-like intestinal defensin against 2019-nCoV, which may provide new insights into the prevention and treatment of 2019-nCoV infection.


2020 ◽  
Vol 20 (3) ◽  
pp. 174-183
Author(s):  
Bushra Nabi ◽  
Saleha Rehman ◽  
Faheem Hyder Pottoo ◽  
Sanjula Baboota ◽  
Javed Ali

: NeuroAIDS, a disease incorporating both infectious and neurodegenerative pathways, is still a formidable challenge for the researchers to deal with. The primary concern for the treatment of neuroAIDS still remains the inaccessibility of the viral reservoir, making it indispensable for novel techniques to be continuously innovated. Since the brain serves as a reservoir for viral replication, it is pragmatic and a prerequisite to overcome the related barriers in order to improve the drug delivery to the brain. The current treatment ideology is based on the combinatorial approach of a mocktail of antiretroviral drugs. However, complete eradication of the disease could not be achieved. Thereby the arena of gene-based cellular delivery is trending and has created a niche for itself in the present scenario. To establish the supremacy of gene delivery, it is advisable to have a better understanding of the molecular mechanism involved in the due process. The mechanism associated with the activity of the anti-HIV gene lies in their intrinsic property to impart resistance to the HIV infection by targeting the viral entry channels. This review principally emphasizes on different types of gene therapies explored so far for the management of AIDS and its associated neurological conditions. Therefore it could rightly be said that we are at the crossroad where the need of the hour is to develop novel strategies for curbing AIDS and its associated neurological conditions.


2019 ◽  
Vol 19 (18) ◽  
pp. 1650-1675 ◽  
Author(s):  
Damoder Reddy Motati ◽  
Dilipkumar Uredi ◽  
E. Blake Watkins

Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.


Author(s):  
Trinath Chowdhury ◽  
Gourisankar Roymahapatra ◽  
Santi M. Mandal

Background: COVID-19 is a life threatening novel corona viral infection to our civilization and spreading rapidly. Terrific efforts are generous by the researchers to search for a drug to control SARS-CoV-2. Methods: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. Results: Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/mol) revealed most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also perform the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). Conclusion: In host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast invitro to in-vivo analysis towards development of therapeutics against SARS-CoV-2.


2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Vasilios M. Polymeropoulos ◽  

There is a dramatic need for extensive research into the predictors of severe infection with SARS-CoV2 and therapeutic options for infected people. People who suffer from severe illness and higher mortality display a pattern of having specific co-morbidities (diabetes, obesity, hypertension) and are of higher age. Recent research has described methods of viral entry via receptors (ACE2, TMPRSS2) and the hyper-inflammatory state often associated with severe illness (increase in interleukins, increase in TNF-alpha). These discoveries have led to the research of currently available and developing therapies, that are helpful to patients. Deficiencies of specific vitamins and other endogenous molecules of the body should be examined to understand if a pattern exists among the people most severely affected. Coenzyme Q10 (CoQ10) is a fat-soluble substance ubiquitously expressed throughout the body that is important for the generation of ATP and mediation of inflammatory disease. CoQ10 faces a decline with increasing age, genetic predispositions, and ingestion of exogenous compounds that could reduce the level of CoQ10. Deficiencies and subsequent supplementation with CoQ10 recently has displayed encouraging results for the improvement of a wide variety of diseases. This manuscript is significant as it points to a potential relationship of CoQ10 and the population suffering from severe illness of COVID-19, and further encourages the need for research into measuring the levels of CoQ10 and vitamins to understand if levels predict severe illness and mortality. This could offer new avenues into research in combating this pandemic and potentially future therapeutic options.


2020 ◽  
Author(s):  
Laura Lafon-Hughes

BACKGROUND It is common knowledge that vaccination has improved our life quality and expectancy since it succeeded in achieving almost eradication of several diseases including chickenpox (varicella), diphtheria, hepatitis A and B, measles, meningococcal, mumps, pneumococcal, polio, rotavirus, rubella, tetanus and whooping cough (pertussis) Vaccination success is based on vaccine induction of neutralizing antibodies that help fight the infection (e.g. by a virus), preventing the disease. Conversely, Antibody-dependent enhancement (ADE) of a viral infection occurs when anti-viral antibodies facilitate viral entry into host cells and enhance viral infection in these cells. ADE has been previously studied in Dengue and HIV viruses and explains why a second infection with Dengue can be lethal. As already reviewed in Part I and Part II, SARS-Cov-2 shares with HIV not only 4 sequences in the Spike protein but also the capacity to attack the immune system. OBJECTIVE As HIV presents ADE, we wondered whether this was also the case regarding SARS-CoV-2. METHODS A literature review was done through Google. RESULTS SARS-CoV-2 presents ADE. As SARS, which does not have the 4 HIV-like inserts, has the same property, ADE would not be driven by the HIV-like spike sequences. CONCLUSIONS ADE can explain the failure of herd immunity-based strategies and will also probably hamper anti-SARS-CoV-2 vaccine development. As reviewed in Part I, there fortunately are promising therapeutic strategies for COVID-19, which should be further developed. In the meantime, complementary countermeasures to protect mainly the youth from this infection are presented to be discussed in Part V Viewpoint.


2020 ◽  
Vol 11 ◽  
Author(s):  
Dimitris G. Placantonakis ◽  
Maria Aguero-Rosenfeld ◽  
Abdallah Flaifel ◽  
John Colavito ◽  
Kenneth Inglima ◽  
...  

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received wide attention, but the mechanisms remain uncertain. Here, we describe computational data from public domain RNA-seq datasets and cerebrospinal fluid data from adult patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of the central nervous system is unlikely. We found that the mRNAs encoding the ACE2 receptor and the TMPRSS2 transmembrane serine protease, both of which are required for viral entry into host cells, are minimally expressed in the major cell types of the brain. In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was validated for CSF studies using stringent criteria; and second, 61% of these patients had CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and that other etiologies are more likely mechanisms.


Sign in / Sign up

Export Citation Format

Share Document