scholarly journals TRANSFERÊNCIA HORIZONTAL DE GENES MEDIADA PELO PLASMÍDEO PCF10 EM ENTEROCOCCUS FAECALIS: IMPACTO SOBRE A DISSEMINAÇÃO DE LINHAGENS MULTIRRESISTENTES E EVOLUÇÃO DA VIRULÊNCIA / HORIZONTAL GENE TRANSFER MEDIATED BY PCF10 PLASMID IN ENTEROCOCCUS FAECALIS: IMPACT ON THE SPREAD OF MULTIDRUG RESISTANT STRAINS AND EVOLUTION OF VIRULENCE

2021 ◽  
Vol 7 (1) ◽  
pp. 2066-2077
Author(s):  
Elias Ribeiro ◽  
Fabiana Brandão ◽  
Tanise Vendruscolo Dalmolin
2021 ◽  
Vol 1 (1) ◽  
pp. 3-24
Author(s):  
Md. Jannat Hossain ◽  
Youssef Attia ◽  
Fatimah Muhammad Ballah ◽  
Md. Saiful Islam ◽  
Md. Abdus Sobur ◽  
...  

Antimicrobial resistance (AMR) in Salmonella in poultry poses a serious human health threat as it has zoonotic importance. Poultry is often linked with outbreaks of Salmonella-associated foodborne illness. Since antimicrobials are heavily used in poultry in Bangladesh, multidrug-resistant (MDR) Salmonella is quite frequently found there. MDR Salmonella is challenging to treat with antimicrobials and often causes a severe economic loss in the poultry sector. By horizontal gene transfer and/or evolutionary mutations, antimicrobials primarily exert selection pressure that contributes to antimicrobials resistance. In addition, resistance patterns can vary with variations in time and space. Without having prior knowledge of resistance patterns, no effective drugs could be prescribed. Therefore, it is crucial to have updated knowledge on the status of AMR in Salmonella in Bangladesh for effective treatment and management of the flocks against salmonellosis. There are several review articles on AMR in Salmonella in poultry in Bangladesh; they lack the whole scenario of the country and particularly do not have enough data on the poultry environment. Considering this scenario, in this review, we have focused on AMR in Salmonella in poultry in Bangladesh (2011–2021), with particular emphasis on data from the poultry and farm environments on a divisional zone basis.


2008 ◽  
Vol 190 (17) ◽  
pp. 6035-6036 ◽  
Author(s):  
Gyung Tae Chung ◽  
Jeong Sik Yoo ◽  
Hee Bok Oh ◽  
Yeong Seon Lee ◽  
Sun Ho Cha ◽  
...  

ABSTRACT Neisseria gonorrhoeae is an obligate human pathogen that is the etiological agent of gonorrhea. We explored variations in the genes of a multidrug-resistant N. gonorrhoeae isolate from a Korean patient in an effort to understand the prevalence, antibiotic resistance, and importance of horizontal gene transfer within this important, naturally competent organism. Here, we report the complete annotated genome sequence of N. gonorrhoeae strain NCCP11945.


2010 ◽  
Vol 54 (11) ◽  
pp. 4924-4926 ◽  
Author(s):  
Azmiza S. Jasni ◽  
Peter Mullany ◽  
Haitham Hussain ◽  
Adam P. Roberts

ABSTRACT Antibiotic-resistant Enterococcus faecalis and Clostridium difficile are responsible for nosocomial infections in humans, in which they inhabit the same niche. Here, we demonstrate transfer of the conjugative transposon Tn5397 from C. difficile 630 to E. faecalis JH2-2, the first reported gene transfer between these two bacteria. Furthermore, transfer from the E. faecalis EF20A transconjugant to the epidemic ribotype 027 C. difficile strain R20291 was also demonstrated. Tn5397 was shown to use a single specific target site in E. faecalis; it also has specific target sites in C. difficile. These experiments highlight the importance of continual monitoring for emerging resistances in these bacteria.


2019 ◽  
Author(s):  
Daniel R. Evans ◽  
Marissa P. Griffith ◽  
Mustapha M. Mustapha ◽  
Jane W. Marsh ◽  
Alexander J. Sundermann ◽  
...  

ABSTRACTMultidrug-resistant bacterial pathogens pose a serious public health threat, especially in hospital settings. Horizontal gene transfer (HGT) of mobile genetic elements (MGEs) contributes to this threat by facilitating the rapid spread of genes conferring antibiotic resistance, enhanced virulence, and environmental persistence between nosocomial pathogens. Despite recent advances in microbial genomics, studies of HGT in hospital settings remain limited in scope. The objective of this study was to identify and track the movement of MGEs within a single hospital system using unbiased methods. We screened the genomes of 2,173 bacterial isolates from healthcare-associated infections collected over an 18-month time period to identify nucleotide regions that were identical in the genomes of bacteria belonging to distinct genera. These putative MGEs were found in 196 isolates belonging to 11 different genera; they grouped into 51 clusters of related elements, and they were most often shared between related genera. To resolve the genomic locations of the most prevalent MGEs, we performed long-read sequencing on a subset of representative isolates and generated highly contiguous, hybrid-assembled genomes. Many of these genomes contained plasmids and chromosomal elements encoding one or more of the MGEs we identified, which were often arranged in a mosaic fashion. We then tracked the appearance of ten MGE-bearing plasmids in all 2,173 genomes, and found evidence supporting the transfer of plasmids between patients independent from bacterial transmission. Finally, we identified two instances of likely plasmid transfer across genera within individual patients. In one instance, the plasmid appeared to have subsequently transferred to a second patient. By surveying a large number of bacterial genomes sampled from infections at a single hospital in a systematic and unbiased manner, we were able to track the independent transfer of MGEs over time. This work expands our understanding of HGT in healthcare settings, and can inform efforts to limit the spread of drug-resistant pathogens in hospitals.


2021 ◽  
Vol 65 (11-12) ◽  
pp. 38-48
Author(s):  
T. S. Komenkova ◽  
E. A. Zaitseva

Enterococci are currently becoming one of the major causative agents of various infectious diseases. Enterococcus faecalis and E.faecium are the most common species causing enterococcal infections. Both species exhibit natural low-level resistance to aminoglycosides, cephalosporins, quinolones, clindamycin, and co-trimoxazole. In addition, the peculiarities of their genome make it easy to acquire resistance to other antibiotics widely used in clinical practice, through mutations or by horizontal gene transfer. The review represents current knowledge about the mechanisms of enterococcal resistance to the most commonly used antibiotics.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel R Evans ◽  
Marissa P Griffith ◽  
Alexander J Sundermann ◽  
Kathleen A Shutt ◽  
Melissa I Saul ◽  
...  

Multidrug-resistant bacteria pose a serious health threat, especially in hospitals. Horizontal gene transfer (HGT) of mobile genetic elements (MGEs) facilitates the spread of antibiotic resistance, virulence, and environmental persistence genes between nosocomial pathogens. We screened the genomes of 2173 bacterial isolates from healthcare-associated infections from a single hospital over 18 months, and identified identical nucleotide regions in bacteria belonging to distinct genera. To further resolve these shared sequences, we performed long-read sequencing on a subset of isolates and generated highly contiguous genomes. We then tracked the appearance of ten different plasmids in all 2173 genomes, and found evidence of plasmid transfer independent from bacterial transmission. Finally, we identified two instances of likely plasmid transfer within individual patients, including one plasmid that likely transferred to a second patient. This work expands our understanding of HGT in healthcare settings, and can inform efforts to limit the spread of drug-resistant pathogens in hospitals.


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Anne-Sophie Godeux ◽  
Agnese Lupo ◽  
Marisa Haenni ◽  
Simon Guette-Marquet ◽  
Gottfried Wilharm ◽  
...  

ABSTRACTAcinetobacter baumanniiis a nosocomial agent with a high propensity for developing resistance to antibiotics. This ability relies on horizontal gene transfer mechanisms occurring in theAcinetobactergenus, including natural transformation. To study natural transformation in bacteria, the most prevalent method uses selection for the acquisition of an antibiotic resistance marker in a target chromosomal locus by the recipient cell. Most clinical isolates ofA. baumanniiare resistant to multiple antibiotics, limiting the use of such selection-based methods. Here, we report the development of a phenotypic and selection-free method based on flow cytometry to detect transformation events in multidrug-resistant (MDR) clinicalA. baumanniiisolates. To this end, we engineered a translational fusion between the abundant and conservedA. baumanniinucleoprotein (HU) and the superfolder green fluorescent protein (sfGFP). The new method was benchmarked against the conventional antibiotic selection-based method. Using this new method, we investigated several parameters affecting transformation efficiencies and identified conditions of transformability one hundred times higher than those previously reported. Using optimized transformation conditions, we probed natural transformation in a set of MDR clinical and nonclinical animalA. baumanniiisolates. Regardless of their origin, the majority of the isolates displayed natural transformability, indicative of a conserved trait in the species. Overall, this new method and optimized protocol will greatly facilitate the study of natural transformation in the opportunistic pathogenA. baumannii.IMPORTANCEAntibiotic resistance is a pressing global health concern with the rise of multiple and panresistant pathogens. The rapid and unfailing resistance to multiple antibiotics of the nosocomial agentAcinetobacter baumannii, notably to carbapenems, prompt to understand the mechanisms behind acquisition of new antibiotic resistance genes. Natural transformation, one of the horizontal gene transfer mechanisms in bacteria, was only recently described inA. baumanniiand could explain its ability to acquire resistance genes. We developed a reliable method to probe and study natural transformation mechanism inA. baumannii. More broadly, this new method based on flow cytometry will allow experimental detection and quantification of horizontal gene transfer events in multidrug-resistantA. baumannii.


Author(s):  
Yushan Pan ◽  
Tengli Zhang ◽  
Lijie Yu ◽  
Zhiyong Zong ◽  
Shiyu Zhao ◽  
...  

The increasing resistance to β-lactams and aminoglycoside antibiotics, mainly due to extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylase genes, is becoming a serious problem in Gram-negative bacteria. Plasmids, as the vehicles for resistance gene capture and horizontal gene transfer, serve a key role in terms of antibiotic resistance emergence and transmission.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Alem Zukancic ◽  
Mubin A. Khan ◽  
Sumayya J. Gurmen ◽  
Quinn M. Gliniecki ◽  
Dayna L. Moritz-Kinkade ◽  
...  

ABSTRACT Staphylococcus pseudintermedius is a major canine pathogen but also occasionally colonizes and infects humans. Multidrug-resistant methicillin-resistant S. pseudintermedius (MDR MRSP) strains have emerged globally, making treatment and control of this pathogen challenging. Sequence type 71 (ST71), ST68, and ST45 are the most widespread and successful MDR MRSP clones. The potential genetic factors underlying the clonal success of these and other predominant clones remain unknown. Characterization of the pangenome, lineage-associated accessory genes, and genes acquired through horizontal gene transfer from other bacteria is important for identifying such factors. Here, we analyzed genome sequence data from 622 S. pseudintermedius isolates to investigate the evolution of pathogenicity across lineages. We show that the predominant clones carry one or more lineage-associated virulence genes. The gene encoding staphylococcal protein A (SpA), a key virulence factor involved in immune evasion and a potential vaccine antigen, is deleted in 62% of isolates. Most importantly, we have discovered that the spa locus is a hot spot for recombination and horizontal gene transfer in S. pseudintermedius, where genes related to restriction modification, prophage immunity, mercury resistance, and nucleotide and carbohydrate metabolism have been acquired in different lineages. Our study also establishes that ST45 is composed of two distinct sublineages that differ in their accessory gene content and virulence potential. Collectively, this study reports several previously undetected lineage-associated genetic factors that may have a role in the clonal success of the major MDR MRSP clones. These data provide a framework for future experimental studies on S. pseudintermedius pathogenesis and for developing novel therapeutics against this pathogen. IMPORTANCE Staphylococcus pseudintermedius is a major canine pathogen but can also occasionally infect humans. Identification of genetic factors contributing to the virulence and clonal success of multidrug-resistant S. pseudintermedius clones is critical for the development of therapeutics against this pathogen. Here, we characterized the genome sequences of a global collection of 622 S. pseudintermedius isolates. We show that all major clones, besides carrying core virulence genes, which are present in all strains, carry one or more lineage-specific genes. Many of these genes have been acquired from other bacterial species through a horizontal gene transfer mechanism. Importantly, we have discovered that the staphylococcal protein A gene (spa), a widely used marker for molecular typing of S. pseudintermedius strains and a potential vaccine candidate antigen, is deleted in 62% of strains. Furthermore, the spa locus in S. pseudintermedius acts as a reservoir to accumulate lineage-associated genes with adaptive functions.


Sign in / Sign up

Export Citation Format

Share Document