scholarly journals Comprehensive analysis of horizontal gene transfer among multidrug-resistant bacterial pathogens in a single hospital

2019 ◽  
Author(s):  
Daniel R. Evans ◽  
Marissa P. Griffith ◽  
Mustapha M. Mustapha ◽  
Jane W. Marsh ◽  
Alexander J. Sundermann ◽  
...  

ABSTRACTMultidrug-resistant bacterial pathogens pose a serious public health threat, especially in hospital settings. Horizontal gene transfer (HGT) of mobile genetic elements (MGEs) contributes to this threat by facilitating the rapid spread of genes conferring antibiotic resistance, enhanced virulence, and environmental persistence between nosocomial pathogens. Despite recent advances in microbial genomics, studies of HGT in hospital settings remain limited in scope. The objective of this study was to identify and track the movement of MGEs within a single hospital system using unbiased methods. We screened the genomes of 2,173 bacterial isolates from healthcare-associated infections collected over an 18-month time period to identify nucleotide regions that were identical in the genomes of bacteria belonging to distinct genera. These putative MGEs were found in 196 isolates belonging to 11 different genera; they grouped into 51 clusters of related elements, and they were most often shared between related genera. To resolve the genomic locations of the most prevalent MGEs, we performed long-read sequencing on a subset of representative isolates and generated highly contiguous, hybrid-assembled genomes. Many of these genomes contained plasmids and chromosomal elements encoding one or more of the MGEs we identified, which were often arranged in a mosaic fashion. We then tracked the appearance of ten MGE-bearing plasmids in all 2,173 genomes, and found evidence supporting the transfer of plasmids between patients independent from bacterial transmission. Finally, we identified two instances of likely plasmid transfer across genera within individual patients. In one instance, the plasmid appeared to have subsequently transferred to a second patient. By surveying a large number of bacterial genomes sampled from infections at a single hospital in a systematic and unbiased manner, we were able to track the independent transfer of MGEs over time. This work expands our understanding of HGT in healthcare settings, and can inform efforts to limit the spread of drug-resistant pathogens in hospitals.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel R Evans ◽  
Marissa P Griffith ◽  
Alexander J Sundermann ◽  
Kathleen A Shutt ◽  
Melissa I Saul ◽  
...  

Multidrug-resistant bacteria pose a serious health threat, especially in hospitals. Horizontal gene transfer (HGT) of mobile genetic elements (MGEs) facilitates the spread of antibiotic resistance, virulence, and environmental persistence genes between nosocomial pathogens. We screened the genomes of 2173 bacterial isolates from healthcare-associated infections from a single hospital over 18 months, and identified identical nucleotide regions in bacteria belonging to distinct genera. To further resolve these shared sequences, we performed long-read sequencing on a subset of isolates and generated highly contiguous genomes. We then tracked the appearance of ten different plasmids in all 2173 genomes, and found evidence of plasmid transfer independent from bacterial transmission. Finally, we identified two instances of likely plasmid transfer within individual patients, including one plasmid that likely transferred to a second patient. This work expands our understanding of HGT in healthcare settings, and can inform efforts to limit the spread of drug-resistant pathogens in hospitals.


2021 ◽  
Vol 1 (1) ◽  
pp. 3-24
Author(s):  
Md. Jannat Hossain ◽  
Youssef Attia ◽  
Fatimah Muhammad Ballah ◽  
Md. Saiful Islam ◽  
Md. Abdus Sobur ◽  
...  

Antimicrobial resistance (AMR) in Salmonella in poultry poses a serious human health threat as it has zoonotic importance. Poultry is often linked with outbreaks of Salmonella-associated foodborne illness. Since antimicrobials are heavily used in poultry in Bangladesh, multidrug-resistant (MDR) Salmonella is quite frequently found there. MDR Salmonella is challenging to treat with antimicrobials and often causes a severe economic loss in the poultry sector. By horizontal gene transfer and/or evolutionary mutations, antimicrobials primarily exert selection pressure that contributes to antimicrobials resistance. In addition, resistance patterns can vary with variations in time and space. Without having prior knowledge of resistance patterns, no effective drugs could be prescribed. Therefore, it is crucial to have updated knowledge on the status of AMR in Salmonella in Bangladesh for effective treatment and management of the flocks against salmonellosis. There are several review articles on AMR in Salmonella in poultry in Bangladesh; they lack the whole scenario of the country and particularly do not have enough data on the poultry environment. Considering this scenario, in this review, we have focused on AMR in Salmonella in poultry in Bangladesh (2011–2021), with particular emphasis on data from the poultry and farm environments on a divisional zone basis.


2019 ◽  
Vol 40 (8) ◽  
pp. 904-909 ◽  
Author(s):  
Isabelle Vock ◽  
Sarah Tschudin-Sutter

AbstractIn the past several decades, the incidence of Klebsiella pneumoniae harboring resistance mechanisms against multiple antibiotic agents has increased on a global scale. We discuss reasons for ongoing transmission of multidrug-resistant K. pneumoniae in healthcare settings, which has resulted in the successful spread and establishment of this pathogen. It is now one of the most important causes of healthcare-associated infections worldwide.


2008 ◽  
Vol 190 (17) ◽  
pp. 6035-6036 ◽  
Author(s):  
Gyung Tae Chung ◽  
Jeong Sik Yoo ◽  
Hee Bok Oh ◽  
Yeong Seon Lee ◽  
Sun Ho Cha ◽  
...  

ABSTRACT Neisseria gonorrhoeae is an obligate human pathogen that is the etiological agent of gonorrhea. We explored variations in the genes of a multidrug-resistant N. gonorrhoeae isolate from a Korean patient in an effort to understand the prevalence, antibiotic resistance, and importance of horizontal gene transfer within this important, naturally competent organism. Here, we report the complete annotated genome sequence of N. gonorrhoeae strain NCCP11945.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Volker Winstel ◽  
Chunguang Liang ◽  
Patricia Sanchez-Carballo ◽  
Matthias Steglich ◽  
Marta Munar ◽  
...  

2019 ◽  
Vol 14 (14) ◽  
pp. 1191-1197 ◽  
Author(s):  
Thijs Bosch ◽  
Rogier Schade ◽  
Fabian Landman ◽  
Leo Schouls ◽  
Karin van Dijk

Aim: To show that a strain of Aeromonas hydrophila became resistant to carbapenems by interspecies transfer of a plasmid using long-read sequencing. Material & methods: Whole genome sequencing of the four isolates was done using Illumina Hiseq, while the plasmid was reconstructed using the MinION sequencer. The resistome was identified with ResFinder. Results: Whole genome sequencing and long-read sequencing showed that all isolates carried a blaVIM-1 gene located on a 165 kb incA/C plasmid. ResFinder confirmed that the resistome of the plasmid, comprising 13 resistance genes, was identical within all isolates. Discussion: Long-read sequencing using the MinION successfully reconstructed a plasmid that was identical in all isolates, providing evidence for horizontal gene transfer of this blaVIM-1 gene carrying plasmid within the patient.


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Anne-Sophie Godeux ◽  
Agnese Lupo ◽  
Marisa Haenni ◽  
Simon Guette-Marquet ◽  
Gottfried Wilharm ◽  
...  

ABSTRACTAcinetobacter baumanniiis a nosocomial agent with a high propensity for developing resistance to antibiotics. This ability relies on horizontal gene transfer mechanisms occurring in theAcinetobactergenus, including natural transformation. To study natural transformation in bacteria, the most prevalent method uses selection for the acquisition of an antibiotic resistance marker in a target chromosomal locus by the recipient cell. Most clinical isolates ofA. baumanniiare resistant to multiple antibiotics, limiting the use of such selection-based methods. Here, we report the development of a phenotypic and selection-free method based on flow cytometry to detect transformation events in multidrug-resistant (MDR) clinicalA. baumanniiisolates. To this end, we engineered a translational fusion between the abundant and conservedA. baumanniinucleoprotein (HU) and the superfolder green fluorescent protein (sfGFP). The new method was benchmarked against the conventional antibiotic selection-based method. Using this new method, we investigated several parameters affecting transformation efficiencies and identified conditions of transformability one hundred times higher than those previously reported. Using optimized transformation conditions, we probed natural transformation in a set of MDR clinical and nonclinical animalA. baumanniiisolates. Regardless of their origin, the majority of the isolates displayed natural transformability, indicative of a conserved trait in the species. Overall, this new method and optimized protocol will greatly facilitate the study of natural transformation in the opportunistic pathogenA. baumannii.IMPORTANCEAntibiotic resistance is a pressing global health concern with the rise of multiple and panresistant pathogens. The rapid and unfailing resistance to multiple antibiotics of the nosocomial agentAcinetobacter baumannii, notably to carbapenems, prompt to understand the mechanisms behind acquisition of new antibiotic resistance genes. Natural transformation, one of the horizontal gene transfer mechanisms in bacteria, was only recently described inA. baumanniiand could explain its ability to acquire resistance genes. We developed a reliable method to probe and study natural transformation mechanism inA. baumannii. More broadly, this new method based on flow cytometry will allow experimental detection and quantification of horizontal gene transfer events in multidrug-resistantA. baumannii.


2021 ◽  
Author(s):  
Elizabeth Pursey ◽  
Tatiana Dimitriu ◽  
Fernanda L. Paganelli ◽  
Edze R. Westra ◽  
Stineke van Houte

AbstractThe acquisition of antibiotic resistance genes via horizontal gene transfer is a key driver of the rise in multidrug resistance amongst bacterial pathogens. Bacterial defence systems per definition restrict the influx of foreign genetic material, and may therefore limit the acquisition of antibiotic resistance. CRISPR-Cas adaptive immune systems are one of the most prevalent defences in bacteria, found in roughly half of bacterial genomes, but it has remained unclear if and how much they contribute to restricting the spread of antibiotic resistance. We analysed ~40,000 whole genomes comprising the full RefSeq dataset for 11 species of clinically important genera of human pathogens including Enterococcus, Staphylococcus, Acinetobacter and Pseudomonas. We modelled the association between CRISPR-Cas and indicators of horizontal gene transfer, and found that pathogens with a CRISPR-Cas system were less likely to carry antibiotic resistance genes than those lacking this defence system. Analysis of the mobile genetic elements targeted by CRISPR-Cas supports a model where this host defence system blocks important vectors of antibiotic resistance. These results suggest a potential “immunocompromised” state for multidrug-resistant strains that may be exploited in tailored interventions that rely on mobile genetic elements, such as phage or phagemids, to treat infections caused by bacterial pathogens.


Author(s):  
Yushan Pan ◽  
Tengli Zhang ◽  
Lijie Yu ◽  
Zhiyong Zong ◽  
Shiyu Zhao ◽  
...  

The increasing resistance to β-lactams and aminoglycoside antibiotics, mainly due to extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylase genes, is becoming a serious problem in Gram-negative bacteria. Plasmids, as the vehicles for resistance gene capture and horizontal gene transfer, serve a key role in terms of antibiotic resistance emergence and transmission.


Sign in / Sign up

Export Citation Format

Share Document