Biological potential of diphenyl diselenide / Potencial biológico do disseleneto de difenila

2021 ◽  
Vol 7 (7) ◽  
pp. 74184-74203
Author(s):  
Julio César Macena ◽  
Daniele Fernanda Renzi ◽  
Diana Fortkamp Grigoletto ◽  
Osmar dos Reis Antunes Junior
2020 ◽  
Vol 2 (1) ◽  
pp. 20
Author(s):  
Pâmella Cordeiro ◽  
Matheus Silva Prado ◽  
José Neto ◽  
Vanessa Nascimento

Organocalcogenides, in particular, organoselenium compounds, have been widely studied due to their large number of synthetic and biological applications. Among organoselenium compounds, a class of bis-selenide-alkene derivatives has attracted attention. Recently, some studies have been developed for the synthesis of vinyl chalcogen derivatives, since these are also highly valuable intermediates in several synthetic applications. However, the methodologies developed so far have extensive reaction times, and use toxic solvents as well as heavy metals. Therefore, there is an emerging need to develop protocols for the synthesis of these molecules that are in accordance with the principles of green chemistry. In this work, we developed an alternative synthesis of bis-selenium-alkene derivatives, through an environmentally appropriate methodology. Reaction optimization was evaluated from the diphenylacetylene and diphenyl diselenide, using I2/DMSO as a catalytic system under microwave irradiation or conventional heating. The variations of these conditions were carried out through different equivalences between the reagents, the amount of catalyst (I2), temperature, DMSO and the reaction process (Microwave or conventional). Even now, it was found that the best established condition was using diphenylacetylene, diphenyl diselenide, 30 mol% I2 in DMSO, under microwave irradiation at 100 °C for 10 min. In this condition, the product was obtained in 82% yield and its characterization was performed using 1H and 13C NMR spectroscopy. Therefore, the methodology that is being developed, in addition to perfectly attending to the principles of green chemistry, will allow to evaluate the reaction scope using different alkenes and diselenides or even disulfides and ditellurides.


2020 ◽  
pp. 67-79
Author(s):  
Yu. Kravchenko

In Ukraine 57.5 % of agricultural land is subjected to erosion with 10–24 million tons of humus, 0.3–0.96 million tons of nitrogen, 0.7–0.9 million tons of phosphorus and 6–12 million tons of potassium lost annually. Degradation processes are also common on chernozems, which cover about 60 % of the Ukrainian territory. The aim of the research is to defi ne the most eff ective soil conservation practices and legislative decisions aimed to conservation/recovering the Ukrainian chernozem fertility. The experimental data of the agrochemical certifi cation of Ukrainian lands, data from scientifi c papers, stock and instructional materials as well as our own fi eld and laboratory studies were used. It has been established that the long-term use of deep subsurface tillage on typical chernozem increases, compared with plowing, the content of 10–0.25 mm of air-dry and water-resistant aggregates, the bulk density, soil water storages, water infi ltration rates, the content of mobile phosphorus and exchangeable potassium, pHH2O, CaCO3 stocks, the contents of humic and fulvic acids, molecular weights of humic acids – by 5.5 and 3.06 %; 0.05 g/cm3; 25.5 mm; 22.6 mm/h; 0.1 and 3 mg/100 g of soil; 0.03 pHH2O; 18 t/ha, 0.02 and 0.04 %, 91195 kDa, respectively. Fertilizers may contribute to the crop yields increase from by 60% in the Polissya, by 40 % – in the Forest Steppe, by 15 % – in the Wet Steppe, by 10 % – in the Dry Steppe and by 40 % – in the Irrigated Steppe areas. In soil-conservation rotations, the crop placement and alternation are advisable to combine with strips or hills sowing, taking into account the local relief features; soil alkalinization, applying anti-erosion structures. Ukrainian agriculture will receive additional 10–12 million tons of forage units or 20–22 % from all fodder in a fi eld agriculture under increasing 8–10 % of arable lands for intercrops. It is advisable to mulch the eroded chernozems of Ukraine depending on their texture composition: 1.3 t/ha of mulch for sandy and loamy soils, 1.9 t/ha – for sandy and 1.1 t/ha – for loamy soils. The implementation of soil conservation agriculture can minimize some soil degradation processes and improve eff ective soil properties required to realize the biological potential of cultivated plants. Key words: chernozem, degradation, fertility, soil conservation technologies, agriculture policy.


2019 ◽  
pp. 1-23
Author(s):  
А.В. Семенютина ◽  
С.Е. Лазарев ◽  
К.А. Мельник

Представители родовых комплексов Robinia (Робиния), Gleditsia (Гледичия) относятся к экономически важным и перспективным, для деградированных ландшафтов засушливого региона, видам растений. Несмотря на это до последнего времени отсутствуют сведения по многим видам этих родовых комплексов, связанные с вопросами экологических основ семеноведения и их репродуктивной способности в условиях светлокаштановых почв Волгоградской области. Все это направлено на выявление и расширение перспективных ареалов культивирования для лесомелиорации и озеленения населенных пунктов. Цель исследований изучение репродуктивной способности представителей родовых комплексов Robinia (Робиния), Gleditsia (Гледичия) в коллекциях ФНЦ агроэкологии РАН и выявление особенностей их селекционного семеноведения для лесомелиорации и озеленения населенных пунктов в сухостепных условиях. Объектами исследований являлись виды и формы рода Robinia: R. viscosa Vent. R. neomexicana Gray. R. pseudoacacia L. R. neomexicana х pseudoacacia, и Gleditsia (G. triacanthos L., G. triacanthos L. f. inermis, G. caspica Desf, G. texana Sarg., G. aquatica, G. japonica, G. caspica, G. sinensis), произрастающие в кластерных участках коллекций ФНЦ агроэкологии РАН, кадастр 34:34:000000:122, 34:34:060061:10. Разработка основ селекционного семеноведения базируется на изучении репродуктивных особенностей выделенных для целевого использования собственных биоресурсов с учетом возможностей всестороннего изучения генеративных качеств и оценки биологического потенциала. Выявлено, что стабильность плодоношения фиксируется через несколько лет после вступления в генеративную фазу: у Robinia и Gleditsia 67 лет. Первое цветение у Gleditsia triacanthos и G. texana, G. aquatica наблюдалось в возрасте 5 лет, G. japonica 6, G. caspica и G. sinensis 8 лет. Завязываемость плодов зависит не только от возраста растения, но и от погодных условий во время цветения. На семенную продуктивность влияет количество выпавших осадков и сумма активных температур в период созревания плодов. Формирование более крупных плодов и семян наблюдается в возрасте до 15 лет. В результате исследований (20172019 гг.) выявлено влияние лимитирующих факторов на биологический потенциал цветения, плодоношения и семенную продуктивность для определения ареалов их культивирования. Representatives of generic systems Robinia, Gleditsia are economically important and promising for degraded arid landscapes of the region, types of plants. Despite this, until recently, there is no information on many types of these generic complexes related to the environmental foundations of seed and their reproductive capacity in light chestnut soils of the Volgograd region. All this is aimed at identifying and expanding promising areas of cultivation for forest reclamation and greening of settlements. The aim of the research is to study the reproductive capacity of representatives of ancestral complexes Robinia, Gleditsia in the collections of the Federal scientific center for Agroecology Russian Academy of Sciences and the identifying features of their selection of seed for forest reclamation and landscaping of settlements in the dry steppe conditions. The objects of research were species and forms of the genus Robinia: R. viscosa Vent. R. neomexicana Gray. R. pseudoacacia L. R. neomexicana x pseudoacacia and Gleditsia (G. triacanthos L., G. triacanthos L. f. inermis, G. caspica Desf, G. texana Sarg., G. aquatica, G. japonica, G. caspica, G. sinensis), growing in the cluster areas of collections of FSC Agroecology RAS, cadastre 34:34:000000:122, 34:34:060061:10. The development of the principles of seed breeding is based on the study of reproductive characteristics of the allocated for the targeted use of their own bioresources, taking into account the possibilities of a comprehensive study of generative qualities and assessment of biological potential. It was found that the stability of fruiting is fixed a few years after entering the generative phase: Robinia and Gleditsia 67 years. The first flowering in Gleditsia triacanthos and G. texana, G. aquatica was observed at the age of 5 years, G. japonica 6, G. caspica and G. sinensis 8 years. Fruit setability depends not only on the age of the plant, but also on weather conditions during flowering. Seed productivity is affected by the amount of precipitation and the amount of active temperatures during the ripening period. The formation of larger fruits and seeds is observed in the age of 15 years. As a result of studies (20172019), the influence of limiting factors on the biological potential of flowering, fruiting and seed production to determine the areas of their cultivation was revealed.


2019 ◽  
Vol 56 (3) ◽  
pp. 305-311
Author(s):  
Debasis Purohit ◽  
Mitali Mandal ◽  
Avisek Dash ◽  
Kumbha Karna Rout ◽  
Narayan Panda ◽  
...  

An effective approach for improving nutrient use efficiency and crop productivity simultaneously through exploitation of biological potential for efficient acquisition and utilization of nutrients by crops is very much needed in this current era. Thus, an attempt is made here to investigate the impact of long term fertilization in the soil ecology in rice-rice cropping system in post kharif - 2015 in flooded tropical rice (Oryza sativa L.) in an acidic sandy soil. The experiment was laid out in a randomized block design with quadruplicated treatments. Soil samples at different growth stages of rice were collected from long term fertilizer experiment.The studied long-term manured treatments included 100 % N, 100% NP, 100 % NPK, 150 % NPK and 100 % NPK+FYM (5 t ha-1) and an unmanured control. Soil fertility status like SOC content and other available nutrient content has decreased continuously towards the crop growth period. Comparing the results of different treatments, it was found that the application of 100% NPK + FYM exhibited highest nutrient content in soils. With regards to microbial properties it was also observed that the amount of microbial biomass carbon (MBC) and microbial biomass nitrogen ( MBN) showed highest accumulation in 100 % NPK + FYM at maximum tillering stage of the rice. The results further reveal that dehydrogenase activity was maximum at panicle initiation stage and thereafter it decreases. Soil organic carbon content, MBC, MBN and dehydrogenase activity were significantly correlated with each other. Significant correlations were observed between rice yield and MBC at maturity stage( R2 = 0.94**) and panicle initiation stage( R2 = 0.92**) and available nitrogen content at maturity stage( R2 = 0.91**).


2018 ◽  
Vol 15 (8) ◽  
pp. 1109-1123
Author(s):  
Jonas da Silva Santos ◽  
Joel Jones Junior ◽  
Flavia M. da Silva

Background: We present here the synthesis of 1,3-thiazolidin-4-one (1) and its functionalised analogues, such as the classical isosteres, glitazone (1,3-thiazolidine-2,4-dione) (2), rhodanine (2-thioxo-1,3- thiazolidin-4-one) (3) and pseudothiohydantoin (2-imino-1,3-thiazolidin-4-one) (4) started in the midnineteenth century to the present day (1865-2018). Objective: The review focuses on the differences in the representation of the molecular structures discussed here over time since the first discussions about the structural theory by Kekulé, Couper and Butlerov. Moreover, advanced synthesis methodologies have been developed for obtaining these functional group, including green chemistry. We discuss about its structure and stability and we show the great biological potential. Conclusion: The 1,3-thiazolidin-4-one nucleus and functionalised analogues such as glitazones (1,3- thiazolidine-2,4-diones), rhodanines (2-thioxo-1,3-thiazolidin-4-ones) and pseudothiohydantoins (2-imino-1,3- thiazolidine-2-4-ones) have great pharmacological importance, and they are already found in commercial pharmaceuticals. Studies indicate a promising future in the area of medicinal chemistry with potential activities against different diseases. The synthesis of these nuclei started in the mid-nineteenth century (1865), with the first discussions about the structural theory by Kekulé, Couper and Butlerov. The present study has demonstrated the differences in the representations of the molecular structures discussed here over time. Since then, various synthetic methodologies have been developed for obtaining these nuclei, and several studies on their structural and biological properties have been performed. Different studies with regards to the green synthesis of these compounds were also presented here. This is the result of the process of environmental awareness. Additionally, the planet Earth is already showing clear signs of depletion, which is currently decreasing the quality of life.


2019 ◽  
Vol 16 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Reshma Nagpal ◽  
Jitender Bhalla ◽  
Shamsher S. Bari

Background:A lot of advancement has been made in the area of β-lactams in recent times. Most of the research is targeted towards the synthesis of novel β-lactams, their functionalization and exploring their biological potential. The C-3 functionalization of β-lactams has continued to attract considerable interest of the scientific community due to their utility as versatile intermediates in organic synthesis and their therapeutic applications. This has led to the significant increase in efforts towards developing efficient and economic strategies for C-3 functionalized β-lactams.Objective:The present review aims to highlight recent advancement made in C-3 functionalization of β-lactams.Conclusion:To summarize, functionalization of β-lactams at C-3 is an essential aspect of β-lactam chemistry in order to improve/modify its synthetic utility as well as biological potential. The C-3 carbocation equivalent method has emerged as an important and convenient strategy for C-3 functionalization of β-lactam heterocycles which provides a wide range of β-lactams viz. 3-alkylated β-lactams, 3-aryl/heteroarylated β-lactams, 3- alkoxylated β-lactams. On the other hand, base mediated functionalization of β-lactams via carbanion intermediate is another useful approach but their scope is limited by the requirement of stringent reaction conditions. In addition to this, organometallic reagent mediated α-alkylation of 3-halo/3-keto-β-lactams also emerged as interesting methods for the synthesis of functionalized β-lactams having good yields and diastereoselectivities.


2015 ◽  
Vol 11 (4) ◽  
pp. 336-341 ◽  
Author(s):  
Syed Saad ◽  
Muhammad Saleem ◽  
Shahnaz Perveen ◽  
Muhammad Alam ◽  
Khalid Khan ◽  
...  

Author(s):  
Jorge A. Ramos-Hernández ◽  
Montserrat Calderón-Santoyo ◽  
Armando Burgos-Hernández ◽  
Joel S. García- Romo ◽  
Arturo Navarro-Ocaña ◽  
...  

Background: Cancer is a disease characterized by the invasion and uncontrolled growth of cells. One of the best ways to minimize the harmful effects of mutagens is through the use of natural antimutagens. In this regard, the search for new antimutagens that act in the chemoprevention could represent a promising field in this area. Objective: In this study biological potential of 11 fractions from Coccoloba uvifera L. leaf hexane extract was evaluated by several in vitro tests. Methods: Leaves were lyophilized and hexane extraction was performed. The extract was fractionated by column chromatography with hexane, ethyl acetate, and methanol. The antimutagenic (Ames test), antiproliferative (MTT test), and antioxidant capacity (DPPH, ABTS, and ferrous ion chelation) of the fractions were evaluated. Results: Fractions 4, 6, 8, and 9 have antimutagenic activity (against sodium azide in strain TA100), fraction 11 showed antiproliferative capacity (IC50 of 24 ± 9 μg/mL in cells of HCT 116). The fractions with the highest activity were analyzed by HPLC-MS and lupeol, acacetin, and β-sitosterol were identified. Conclusion: This study demonstrates, for the first time, the bioactivity of C. uvifera leaf as a new source of high biological value compounds (HBVC), which can be of interest to the food and pharmaceutical industries.


Sign in / Sign up

Export Citation Format

Share Document