scholarly journals Central Injection of Ghrelin Improves Motor Balance in the Rotarod Test in the Rats: Altering the Expression of Drd1 Gene

2021 ◽  
Vol 6 (1) ◽  
pp. 11-16
Author(s):  
Vahideh Sahraiian ◽  
Homayoun Khazali

Introduction: Motor learning consolidates in adulthood, and its defects begin to appear with aging. Ghrelin, an endogenous peptide, improves memory and learning, targeting dopaminergic circuits. While cytidine diphosphate choline (citicoline) is known as a common drug for enhancing memory and learning in aging, it is not recommended for adults due to its side effects. The current study aimed at investigating if ghrelin treatment would improve motor learning via the expression of a relevant gene. Methods: For this experimental study, adult male Wistar rats were randomly divided into five groups: control group, three groups of ghrelin treatment (0.3, 1.5, and 3 nmol/μL), and one group with citicoline treatment. The injections were done intra-hippocampally. The motor learning rate was determined using the rotarod performance test by measuring the resistance to falling. Then the expression of dopamine receptor type D1 (Drd1) gene in the hippocampus was measured by a real-time polymerase chain reaction (PCR). Results: Ghrelin (3 nmol/μL) and citicoline had similar and significant effects on motor learning improvement (P<0.01). Both drugs significantly increased Drd1 gene expression (P <0.001). Conclusion: Ghrelin, like citicoline, improves motor learning by altering the expression of Drd1 gene in the hippocampus.

2021 ◽  
pp. 102-108

Background and Objectives: Diabetes affects the central nervous system associated with cognition, especially memory and learning. The present study aimed to investigate the effects of probiotics (living microorganisms that provide health benefits) and resveratrol (a polyphenol with potential antioxidant activity) combination on oxidative stress, glucagon-like peptide-1 (GLP-1), memory, and learning in diabetic rats. Materials and Methods: Male Wistar rats were randomly divided into five groups (six animals per group) of control, diabetic, probiotic-treated diabetic (50×109CFU/kg in drinking water), resveratrol-treated diabetic (10 mg/kg, oral gavage), as well as probiotics and resveratrol-treated diabetic. The treatment procedures lasted for four weeks, and a Shuttle Box test was then performed to evaluate memory and learning. At the end of the study, animals were sacrificed, and the hippocampus was removed to perform biochemical studies. Results: The levels of malondialdehyde and total oxidative status significantly decreased in the diabetic group treated with combined resveratrol and probiotics (P<0.05). Furthermore, the levels of superoxide dismutase, catalase, and glutathione peroxidase significantly increased in the hippocampus of the diabetic group treated with combined resveratrol and probiotics (P<0.05). According to the results, the combined therapy improved memory and learning (P<0.05). In addition, the level of GLP-1 increased in the treatment groups (P<0.05). Conclusion: Treatment with resveratrol and probiotics significantly normalized pyramidal cell densities in the hippocampus of diabetic rats. This combination also reduced oxidative stress and activated the gut-brain axis in diabetic animals.


Author(s):  
Zafer Sahin ◽  
Alpaslan Ozkurkculer ◽  
Omer Faruk Kalkan ◽  
Ahmet Ozkaya ◽  
Aynur Koc ◽  
...  

Abstract. Alterations of essential elements in the brain are associated with the pathophysiology of many neuropsychiatric disorders. It is known that chronic/overwhelming stress may cause some anxiety and/or depression. We aimed to investigate the effects of two different chronic immobilization stress protocols on anxiety-related behaviors and brain minerals. Adult male Wistar rats were divided into 3 groups as follows ( n = 10/group): control, immobilization stress-1 (45 minutes daily for 7-day) and immobilization stress-2 (45 minutes twice a day for 7-day). Stress-related behaviors were evaluated by open field test and forced swimming test. In the immobilization stress-1 and immobilization stress-2 groups, percentage of time spent in the central area (6.38 ± 0.41% and 6.28 ± 1.03% respectively, p < 0.05) and rearing frequency (2.75 ± 0.41 and 3.85 ± 0.46, p < 0.01 and p < 0.05, respectively) were lower, latency to center area (49.11 ± 5.87 s and 44.92 ± 8.04 s, p < 0.01 and p < 0.01, respectively), were higher than the control group (8.65 ± 0.49%, 5.37 ± 0.44 and 15.3 ± 3.32 s, respectively). In the immobilization stress-1 group, zinc (12.65 ± 0.1 ppm, p < 0.001), magnesium (170.4 ± 1.7 ppm, p < 0.005) and phosphate (2.76 ± 0.1 ppm, p < 0.05) levels were lower than the control group (13.87 ± 0.16 ppm, 179.31 ± 1.87 ppm and 3.11 ± 0.06 ppm, respectively). In the immobilization stress-2 group, magnesium (171.56 ± 1.87 ppm, p < 0.05), phosphate (2.44 ± 0.07 ppm, p < 0.001) levels were lower, and manganese (373.68 ± 5.76 ppb, p < 0.001) and copper (2.79 ± 0.15 ppm, p < 0.05) levels were higher than the control group (179.31 ± 1.87 ppm, 3.11 ± 0.06 ppm, 327.25 ± 8.35 ppb and 2.45 ± 0.05 ppm, respectively). Our results indicated that 7-day chronic immobilization stress increased anxiety-related behaviors in both stress groups. Zinc, magnesium, phosphate, copper and manganese levels were affected in the brain.


2006 ◽  
Vol 76 (3) ◽  
pp. 111-116 ◽  
Author(s):  
Hiroshi Matsuzaki ◽  
Misao Miwa

The purpose of this study was to clarify the effects of dietary calcium (Ca) supplementation on bone metabolism of magnesium (Mg)-deficient rats. Male Wistar rats were randomized by weight into three groups, and fed a control diet (control group), a Mg-deficient diet (Mg- group) or a Mg-deficient diet having twice the control Ca concentrations (Mg-2Ca group) for 14 days. Trabecular bone volume was significantly lower in the Mg - and Mg-2Ca groups than in the control group. Trabecular number was also significantly lower in the Mg - and Mg-2Ca groups than in the control group. Mineralizing bone surface, mineral apposition rate (MAR), and surface referent bone formation rate (BFR/BS) were significantly lower in the Mg - and Mg-2Ca groups than in the control group. Furthermore, MAR and BFR/BS were significantly lower in the Mg-2Ca group than in the Mg - group. These results suggest that dietary Ca supplementation suppresses bone formation in Mg-deficient rats.


2016 ◽  
Vol 32 (4) ◽  
pp. 291-297 ◽  
Author(s):  
Dubi Lufi ◽  
Shachar Pan

Abstract. Several studies have shown that Continuous Performance Tests (CPT) can diagnose Attention Deficit Hyperactivity Disorder (ADHD) better than other tests. Research reporting comparisons of two or more CPT-type tests is scarce. The purpose of the study was to compare the Mathematics Continuous Performance Test (MATH-CPT) with another CPT-type test (CPT II) and a questionnaire (the Brown Scale). The comparison was carried out by looking at correlations among subscales and checking the precision of detecting ADHD. Ninety-five high school and college students participated in the study, 41 with ADHD were the research group and 54 were the control group. The participants performed the two tests and answered the questionnaire. The results showed that the MATH-CPT correctly identified 74.50% of the participants of both groups as compared to the 71.60% of the CPT II. Correlations between the two CPT-type tests were moderate; however, they were similar to correlations found in other studies comparing similar tools. The MATH-CPT, final attention formula, showed significant correlations with the Brown scales, while the CPT II, confidence index associated with ADHD assessment, showed nonsignificant correlations with the questionnaire. The study indicated that MATH-CPT can be used with a clinical population of ADHD and for research purposes.


2018 ◽  
Vol 15 (2) ◽  
pp. 146
Author(s):  
BRILIAN DINANTI ◽  
FITRI HANDAJANI

<p>Liver is an organ with complex metabolism. When the liver is inflamed, cellular immunity will defend against inflammatory agents by stimulating immune cells to produce reactive oxygen species (ROS). Excessive ROS accumulation cause oxydative stress with increased  liver malondialdehyde (MDA) level. Some researches showed that purple sweet potato contain flavonoids (anthocyanins) that functioned as antioxydants. This study aimed to show the prophylactic effect of purple sweet potato extract to the liver MDA level of male Wistar rats induced by carrageenan.</p><p>This study used post-only control group method using 18 male Wistar rats divided into 3 groups: group of rats without treatment, group of rats induced by 0,1 ml of 1% carrageenan by intraplantar injection on day-8, and group of rats given with 872 mg/kgBW of purple sweet potato extract for 7 days and induced by 0,1 ml of 1% carrageenan. In the end of the study, the liver MDA levels were measured by Thio-Barbituric Acid method on each groups.</p><p>The results of One-Way ANOVA test showed there was no significant difference (p = 0,290) between group of rats without treatment (<em>x̅</em>= 207,50) and group of rats induced by carrageenan (<em>x̅</em>=233,17). Then, there is no significant difference (p = 0.978) between group of rats induced by carrageenan and group of rats given with prophylactic purple sweet potato extract and induced by carrageenan (<em>x̅</em>= 232,50).</p><p>The conclusion of this study is giving intraplantar injection of carrageenan can increase liver MDA level insignificantly and giving prophylactic purple sweet potato extract has an effect to decrease the liver MDA level of rats induced by carragenan insignificantly because it contains anthocyanins as antioxidants.</p><p> </p><strong>Keywords: </strong>Liver, <em>Ipomoea batatas</em> L., Malondialdehyde, Anthocyanins


2020 ◽  
Vol 13 (4) ◽  
pp. 342-352 ◽  
Author(s):  
Vipin K. Verma ◽  
Salma Malik ◽  
Ekta Mutneja ◽  
Anil K. Sahu ◽  
Kumari Rupashi ◽  
...  

Background: The activation of Nrf2/HO-1 pathway has been shown to protect against cisplatin- induced nephrotoxicity by reducing oxidative stress. Berberine (Ber), an isoquinoline alkaloid, has demonstrated antioxidant, anti-inflammatory and anti-apoptotic activities in various experimental models. Aim: To check the effect of Ber on cisplatin-induced nephrotoxicity and to explore the involved mechanism. Methods: Adult male Wistar rats were divided into 6 groups: Normal, cisplatin-control, treatment groups and per se group. Normal saline and Ber (20, 40 and 80 mg/kg; p.o.) was administered to rats for 10 days. A single intraperitoneal injection of cisplatin (8 mg/kg) was injected on 7th day to induced nephrotoxicity. On 10th day, rats were sacrificed, the kidney was removed and stored for the estimation of various parameters. Results: As compared to cisplatin-control group, Ber pretreatment improved renal function system and preserved renal architecture. It also diminished oxidative stress by upregulating the expression of Nrf2/HO-1 proteins. In addition, Ber attenuated the cisplatin mediated inflammation and apoptosis. Furthermore, it also reduced the phosphorylation of p38/JNK and PARP/Beclin-1 expression in the kidney. Conclusion: Ber attenuated renal injury by activating Nrf2/HO-1 and inhibiting JNK/p38MAPKs/ PARP/Beclin-1 expression which prevented oxidative stress, inflammation, apoptosis and autophagy in renal tissue.


2007 ◽  
Vol 72 (10) ◽  
pp. 1350-1364 ◽  
Author(s):  
Marie Stiborová ◽  
Helena Dračínská ◽  
Dagmar Aimová ◽  
Petr Hodek ◽  
Jiří Hudeček ◽  
...  

The antineoplastic agent ellipticine was investigated for its ability to induce the biotransformation enzyme NAD(P)H:quinone oxidoreductase (DT-diaphorase, EC 1.6.99.2) in male Wistar rats. Using the real-time polymerase chain reaction, the levels of NAD(P)H:quinone oxidoreductase mRNA were determined in livers, kidneys and lungs of rats treated intraperitoneally with ellipticine (40 mg/kg body weight) and of control (untreated) rats. Cytosolic fractions were isolated from the same tissues of control and ellipticine-treated rats and tested for NAD(P)H:quinone oxidoreductase protein expression and its enzymatic activity. The results demonstrate that ellipticine is a potent inducer of NAD(P)H:quinone oxidoreductase in rat livers and kidneys, while no induction of this enzyme was detectable in rat lungs. The increase in levels of NAD(P)H:quinone oxidoreductase mRNA correlates with the increase in expression of its protein and enzymatic activity, measured with menadione and 3-nitrobenzanthrone as substrates. The results, the identification of the potential of ellipticine to induce NAD(P)H:quinone oxidoreductase, suggest that this drug is capable of modulating biological efficiencies of the toxicants and/or drugs that are reductively metabolized by this enzyme.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Aysel Kalayci Yigin ◽  
Mehmet Bulent Vatan ◽  
Ramazan Akdemir ◽  
Muhammed Necati Murat Aksoy ◽  
Mehmet Akif Cakar ◽  
...  

Polymorphisms in Lys939Gln XPC gene may diminish DNA repair capacity, eventually increasing the risk of carcinogenesis. The aim of the present study was to evaluate the significance of polymorphism Lys939Gln in XPC gene in patients with mitral chordae tendinea rupture (MCTR). Twenty-one patients with MCTR and thirty-seven age and sex matched controls were enrolled in the study. Genotyping of XPC gene Lys939Gln polymorphism was carried out using polymerase chain reaction- (PCR-) restriction fragment length polymorphism (RFLP). The frequencies of the heterozygote genotype (Lys/Gln-AC) and homozygote genotype (Gln/Gln-CC) were significantly different in MCTR as compared to control group, respectively (52.4% versus 43.2%,p=0.049; 38.15% versus 16.2%,p=0.018). Homozygote variant (Gln/Gln) genotype was significantly associated with increased risk of MCTR (OR = 2.059; 95% CI: 1.097–3.863;p=0.018). Heterozygote variant (Lys/Gln) genotype was also highly significantly associated with increased risk of MCTR (OR = 1.489; 95% CI: 1.041–2.129;p=0.049). The variant allele C was found to be significantly associated with MCTR (OR = 1.481; 95% CI: 1.101–1.992;p=0.011). This study has demonstrated the association of XPC gene Lys939Gln polymorphism with MCTR, which is significantly associated with increased risk of MCTR.


2021 ◽  
pp. 1-11
Author(s):  
Helle Hüche Larsen ◽  
Rasmus Feld Frisk ◽  
Maria Willerslev-Olsen ◽  
Jens Bo Nielsen

BACKGROUND: Cerebral palsy (CP) is a neurodevelopmental disturbance characterized by impaired control of movement. Function often decreases and 15% of adults are classified as severely affected (Gross Motor Function Classification Scale III-V). Little is known about interventions that aim to improve functional abilities in this population. OBJECTIVE: To evaluate a 12-week intervention based on motor learning principles on functional ability in adults with severe CP. METHODS: 16 adults (36±10 years, GMFCS III-V) were enrolled and divided into an intervention group (Active group) and a standard care group (Control group). Primary outcome measure was Gross Motor Function Measure (GMFM-88). Secondary measures were neurological status. The Active group were measured at baseline, after the intervention and at one-month follow-up. The Control group were measured at baseline and after one month. RESULTS: Analysis showed statistically significant improvement in GMFM-88 for the Active group from baseline to post assessment compared with the Control group (group difference: 5 points, SE 14.5, p = 0.008, CI: 1.2 to 8.7). Improvements were maintained at follow-up. Results from the neurological screening showed no clear tendencies. CONCLUSIONS: The study provides support that activities based on motor learning principles may improve gross motor function in adults with severe CP.


Author(s):  
Cristina Russo ◽  
Laura Veronelli ◽  
Carlotta Casati ◽  
Alessia Monti ◽  
Laura Perucca ◽  
...  

AbstractMotor learning interacts with and shapes experience-dependent cerebral plasticity. In stroke patients with paresis of the upper limb, motor recovery was proposed to reflect a process of re-learning the lost/impaired skill, which interacts with rehabilitation. However, to what extent stroke patients with hemiparesis may retain the ability of learning with their affected limb remains an unsolved issue, that was addressed by this study. Nineteen patients, with a cerebrovascular lesion affecting the right or the left hemisphere, underwent an explicit motor learning task (finger tapping task, FTT), which was performed with the paretic hand. Eighteen age-matched healthy participants served as controls. Motor performance was assessed during the learning phase (i.e., online learning), as well as immediately at the end of practice, and after 90 min and 24 h (i.e., retention). Results show that overall, as compared to the control group, stroke patients, regardless of the side (left/right) of the hemispheric lesion, do not show a reliable practice-dependent improvement; consequently, no retention could be detected in the long-term (after 90 min and 24 h). The motor learning impairment was associated with subcortical damage, predominantly affecting the basal ganglia; conversely, it was not associated with age, time elapsed from stroke, severity of upper-limb motor and sensory deficits, and the general neurological condition. This evidence expands our understanding regarding the potential of post-stroke motor recovery through motor practice, suggesting a potential key role of basal ganglia, not only in implicit motor learning as previously pointed out, but also in explicit finger tapping motor tasks.


Sign in / Sign up

Export Citation Format

Share Document