scholarly journals ENERGY EFFICIENT SOLUTIONS FOR SMALL CAPACITY ELECTRIC ARC FURNACES OF A FOUNDRY CLASS

2019 ◽  
Vol 1 (21) ◽  
pp. 74-81
Author(s):  
Sergey Timoshenko

The low specific power of the transformer in combination with the increased heat losses due to the geometrical factor and the unstable operation with long downtimes are predetermined by low technical and economic indicators of production, in comparison with the EAF of the "big" metallurgy. An urgent task is to search for low-cost methods to increase the energy efficiency of furnaces of this class by simulating the thermal work of the elements of the working space. Numerical simulation of heat transfer in the working space of foundry class AC EAF with a capacity of 3 tons has shown that with a duration of furnace downtime of 18–20 hours or more, replacing 40% of the walls lining and 16-20% of the roof lining by water cooled elements with a volumetric structure accumulating the skull, with using of “deep" bath with a reduced by 14–15% diameter of the radiating surface allows, at a given melting mass, to reach the energy consumption level of the furnace with a fully refractory lining and lower with a significant saving of refractories. Preloading scrap into the furnace in downtime increases energy efficiency, all other things being equal.

2020 ◽  
Vol 13 (1) ◽  
pp. 235
Author(s):  
Fernando Martín-Consuegra ◽  
Fernando de Frutos ◽  
Ignacio Oteiza ◽  
Carmen Alonso ◽  
Borja Frutos

This study quantified the improvement in energy efficiency following passive renovation of the thermal envelope in highly inefficient residential complexes on the outskirts of the city of Madrid. A case study was conducted of a single-family terrace housing, representative of the smallest size subsidized dwellings built in Spain for workers in the nineteen fifties and sixties. Two units of similar characteristics, one in its original state and the other renovated, were analyzed in detail against their urban setting with an experimental method proposed hereunder for simplified, minimal monitoring. The dwellings were compared on the grounds of indoor environment quality parameters recorded over a period covering both winter and summer months. That information was supplemented with an analysis of the energy consumption metered. The result was a low-cost, reasonably accurate measure of the improvements gained in the renovated unit. The monitoring output data were entered in a theoretical energy efficiency model for the entire neighborhood to obtain an estimate of the potential for energy savings if the entire urban complex were renovated.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 882
Author(s):  
M. Munzer Alseed ◽  
Hamzah Syed ◽  
Mehmet Cengiz Onbasli ◽  
Ali K. Yetisen ◽  
Savas Tasoglu

Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.


2017 ◽  
Vol 11 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Mukesh Kumar ◽  
Kamlesh Dutta

Wireless networks are used by everyone for their convenience for transferring packets from one node to another without having a static infrastructure. In WSN, there are some nodes which are light weight, small in size, having low computation overhead, and low cost known as sensor nodes. In literature, there exists many secure data aggregation protocols available but they are not sufficient to detect the malicious node. The authors require a better security mechanism or a technique to secure the network. Data aggregation is an essential paradigm in WSN. The idea is to combine data coming from different source nodes in order to achieve energy efficiency. In this paper, the authors proposed a protocol for worm hole attack detection during data aggregation in WSN. Main focus is on wormhole attack detection and its countermeasures.


1970 ◽  
Vol 185 (1) ◽  
pp. 95-107
Author(s):  
B. H. Croft

The requirements of the modern automotive petrol engine in relation to higher specific power outputs while retaining good driveability and satisfying the impending exhaust emission control regulations, motivated an investigation into the potential of petrol injection. Consideration of the control requirements and accuracy necessary led, at an early stage, to the selection of electronic control on the basis of control capability, long term reliability, relatively low cost and the potential for future development. The fuel system was designed round the electronic control, manifold injection being used instead of direct injection on the basis of simplicity, lower cost and greater installation flexibility. The original system concept has changed only in detail, development effort being applied to the refinement of the system components to achieve a high standard of performance and the facility to apply the system with minimal modification to a wide range of engine types. The system is described in some detail and typical examples of the system performance on vehicles are presented.


Author(s):  
Valerio De Martinis ◽  
Ambra Toletti ◽  
Francesco Corman ◽  
Ulrich A. Weidmann ◽  
Andrew Nash

The optimization of rail operation for improving energy efficiency plays an important role for the current and future market of rail freight services and helps rail compete with other transport modes. This paper presents a feedforward simulation-based model that performs speed profile optimization together with minor rescheduling actions. The model’s purpose is to provide railway operators and infrastructure managers with energy-efficient solutions that are tailored especially for freight trains. This work starts from the assumption that freight train characteristics are completely defined only a few hours before actual departure; therefore, small specific feedforward adjustments that do not affect the surrounding operation can still be considered. The model was tested in a numerical example. The example clearly shows how the optimized solutions can be evaluated with reference to energy saved and robustness within the rail traffic. The evaluation is based on real data from the North–South corridor crossing Switzerland from Germany to Italy.


Author(s):  
Hamed Nabizadeh Rafsanjani

Detailed energy-use information of office buildings’ occupants is necessary to implement proper simulation/intervention techniques. However, acquiring accurate occupant-specific energy consumption in office buildings at low cost is currently a challenging task since existing intrusive load monitoring (ILM) technologies require a large capital investment to provide high-resolution electricity usage data for individual occupants. On the other hand, non-intrusive load monitoring (NILM) approaches have been proven as more cost effective and flexible approaches to provide energy-use information of individual appliances. Therefore, extending the concept of NILM to individual occupants would be beneficial. This paper proposes two occupancy-related energy-consuming features, delay interval and magnitude of power changes and evaluates their significances for extracting occupant-specific power changes in a non-intrusive manner. The proposed features were examined through implementing a logistic regression model as a predictor on aggregate energy load data collected from an office building. Hypotheses tests also confirmed that both features are statistically significant to non-intrusively derive individual occupants’ energy-use information. As the main contribution of this study, these features could be utilized in developing sophisticated NILM-based approaches to monitor individual occupant energy-consuming behavior.  


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2515-2521

Most customarily used motor in the industries are induction motor due to its low cost, robustness and less maintenance. The change in the existing framework is necessary in order to make the motor more efficient one. This paper cast enlightenment about the PLC based 3 phase multi-starter control induction motor with energy efficient single control system. In order to start the engine's operation by its own power, starters are used. Various starters are available to initiate the 3-phase induction motor namely Direct On-line, Star-delta, autotransformer and rotor impedance. The employment of this PLC based techniques helps to increase the energy efficiency of the motor .The employability of PLC in this system is to help in the growth of automation. The hardware and software results of the multi starter control using single control systems are analysed


2013 ◽  
Vol 53 (5) ◽  
pp. 743-750 ◽  
Author(s):  
Fernando Martell-Chávez ◽  
Marco Ramírez-Argáez ◽  
Armando Llamas-Terres ◽  
Osvaldo Micheloud-Vernackt

Author(s):  
D. Clayton-Warwick ◽  
M.D. Kempe ◽  
M. S. Dabney ◽  
T. M. Barnes ◽  
C. A. Wolden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document