scholarly journals Development of a Laboratory-Scale Thermal-Arc-Plasma Reactor and its Application in the Pyrolysis of Petroleum Oily Sludge

2020 ◽  
Vol 2 (1) ◽  
pp. 15-27
Author(s):  
Abubakar M. Ali ◽  
Mohd A. Abu-Hassan ◽  
Raja R.K. Ibrahim ◽  
Bala I. Abdulkarim

Waste treatment using thermal arc plasma is well established and laboratory/pilot scale plasma reactors were developed and their performances for the destruction of different hazardous wastes, other than petroleum oily sludge, were studied. This work aims to extend the plasma technology to the pyrolysis of hazardous petroleum oily sludge. A 4.7 kW thermal arc plasma reactor was developed using a standard TIG arc welding torch. The transferred arc plasma reactor was used to treat 20 g/batch of petroleum oily sludge. The prevailing temperature inside the reactor ranges between 356 – 1694 oC. The plasma arc temperature increased with increasing plasma arc current and also with increasing plasma gas flow-rate. A vitreous slag and a flue gas were generated as products. A mass reduction of between 36.87 – 91.40% and a TOC reduction of 21.47 – 93.76% were achieved in the treatment time of 2 – 5 min. The mass reduction was observed to increase with treatment time. However, the increase was more rapid between the 3rd and the 4th min of the treatment. The flue gas produced contains H2 (43.79 – 50.97 mol%), H2O (26.60 – 30.22 mol%), CO (8.45 – 11.18 mol%), CO2 (5.12 – 10.35 mol%), CH4 (2.17 – 3.38 mol%), C2H2 (0.86 – 2.69 mol%) and C2H4 (0.76 – 2.17 mol%). Thus, the thermal plasma reactor provides a suitable method of treating petroleum oily sludge.

2021 ◽  
Vol 36 (1) ◽  
pp. 1-8
Author(s):  
ALI ABUBAKAR ◽  
Bala Abdulkarim ◽  
Ephraim Kefas

A large quantity of wastewater sludge is generated yearly. Traditional disposal methods are short of providing the much needed benign treatment. Thermal plasma is a promising treatment technique to address this problem. A 20 cm3 capacity laboratory-scale thermal-arc plasma reactor was developed using a 4.5 kW TIG welding torch and was used to treat wastewater sludge. The design was based on a DC transferred-arc torch with argon gas as plasma forming gas. The reactor was tested with wastewater sludge from the petroleum industry. The plasma arc temperature was in the range of 356 – 1694 oC at an arc current of 100 – 190 A. Two products, flue gas and a vitreous slag were obtained. A mass reduction of 36.87 – 91.40% of the sludge was achieved at an arc current 150 – 190 A, which correspond to a plasma temperature range of 539 – 1603 oC. The mass reduction increased with treatment duration from 2 – 8 min. The mass reduction also increased with increasing arc current from 150 – 190 A at an interval of 20 A. Reduction in total organic carbon (TOC) was between 74.03 – 75.83%. The metal elements in the wastewater sludge were enriched after the plasma treatment. The composition of the flue gas is H2, CO, O2, CO2, CH4 and C2 hydrocarbons. CO is the major component accounting for over 74%. The concentration of greenhouse gases (CH4 and CO2 combined) is less than unity. The system was able to gasify the organics in the wastewater sludge to combustible gases and vitrified the inorganics into a slag. Keyword: Thermal plasma, wastewater sludge, plasma temperature, mass reduction, TOC, carbon conversion


2016 ◽  
Vol 852 ◽  
pp. 1140-1146
Author(s):  
Xiao Jing Li ◽  
Yong Liang Gao ◽  
Yan Yin ◽  
Shun Qi Zheng ◽  
Yang Sheng Zheng

Numerical simulation method was developed to investigate the performance of plasma and multi-physical fields in direct current (DC) arc plasma reactor for chemical vapor deposition (CVD) Diamond film,in order to obtain more information on the process of CVD. Finite Volume Method (FVM) was adopted. Continuous arc forming and the dynamic formation process of rotating arc plasma were shown in this paper. Multi-physics field in deposition chamber were modeled including flow field, temperature field. Distribution of velocity and temperature were obtained by solving momentum and energy equation with SIMPLE separation algorithm. Simulation results show that, plasma temperature near the cathode tip is the highest, which is more than 1×104K. The plasma distribution shape like the bell jar. The changing regularity of outlet velocity, temperature and static pressure with the distance from the anode center were revealed. The effectiveness of plasma temperature and gas flow calculated was confirmed by the experimental results. The research results provide the theoretical foundation for obtaining uniform diamond thick film.


2006 ◽  
Vol 6 (2) ◽  
pp. 76
Author(s):  
Antonius Indarto ◽  
Jae-Wook Choi ◽  
Hwaung Lee ◽  
Hyung Keun Song

Decomposition of carbon dioxide (C02) by gliding arc plasma was examined. The plasma reactor was consisted of two triangles stainless steel plates which was connected to a 20 kV AC power supply. The gas entered through a nozzle tube from the upstream cylinder reactor and exit at the downstream of the reactor. The effect of total gas flow rates have been used to study the chemical process reaction in gliding plasma system. The model of active-chemical kinetic of C02 decomposition was built to explain the way of plasma reaction. Experiment results indicate the conversion of C02 reached 18% at the total gas flow rate of 1.5' 10.5m3s'1and produced CO and 02 as the main gaseous final products.


Author(s):  
Grzegorz Komarzyniec ◽  
Jarosław Diatczyk ◽  
Henryka Danuta Stryczewska

AbstractThe arc plasma reactors are especially suitable for treatment of big volumes of exhaust gases emitted to the atmosphere during various technological processes. They can operate at three-phase power system and can be connected in series or in parallel to the gas flow. Their proper operation require power supply systems that should ionize the inter-electrode zone and maintain the cyclic and non-equilibrium operation of the arc discharge after ignition while presenting stable and reliable operation. Transformers of special construction are the basic elements of all of arc discharge plasma reactors power systems. Paper presents results of investigation of 5-limb transformer as a power supply for the arc plasma reactor. The possibility to take advantage of the voltage induced in the yokes of this kind of transformer for ignition of the discharge is also discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1518
Author(s):  
Hee-Jeong Hwang ◽  
So-Yoon Yee ◽  
Myong-Soo Chung

Controlling microbial problems when processing seeds and powdered foods is difficult due to their low water activity, irregular surfaces, and opaqueness. Moreover, existing thermal processing can readily cause various undesirable changes in sensory properties. Intense pulsed light (IPL) can be effective in nonthermal processing, and so two xenon lamps were attached to the sides of a self-designed cyclone type of pilot-scale IPL device. Each lamp was connected to its own power supply, and the following treatment conditions were applied to four sample types: lamp DC voltage of 1800–4200 V, pulse width of 0.5–1.0 ms, frequency of 2 Hz, and treatment time of 1–5 min. This device achieved reductions of 0.45, 0.66, and 0.88 log CFU/mL for ground black pepper, red pepper, and embryo buds of rice, respectively, under a total energy fluence of 12.31 J/cm2. Meanwhile, >3-log reductions were achieved for sesame seed samples under a total energy fluence of 11.26 J/cm2. In addition, analyses of color changes, water activity, and moisture content revealed no significant differences between the control and IPL-treated samples. These findings indicate that IPL treatment may be considered a feasible sterilization method for seeds and powdered foods.


2021 ◽  
Vol 16 ◽  
pp. 155892502199275
Author(s):  
Ajinkya Powar ◽  
Anne Perwuelz ◽  
Nemeshwaree Behary ◽  
Le vinh Hoang ◽  
Thierry Aussenac ◽  
...  

Color stripping is one of the most convenient ways to rectify the various shade faults occurred during printing or dyeing process of textiles. But, the conventional chemical assisted process poses serious risk of the environmental pollution. Secondly, the chemical recycling of the cellulosic fibers may be disrupted due to the presence of the impurities like colorants, finishes, and the additives in the discarded textiles. So, there is a need to study ways to remove such impurities from the discarded cellulosic textiles in a sustainable manner. This work examines the decolorization of the pigment prints on cellulosic fabrics at pilot scale using an ozone-assisted process. The effect of varying pH, ozone concentration and the treatment time on the decolorization of the pigment prints was optimized using the response surface methodology technique. The effects of ozonation process parameters on the mechanical properties of cellulosic cotton fabric were measured. Decolorization of pigment printed samples was studied with respect to the surface effects by a scanning electron microscopy (SEM), and the chemical removal effects of ozonation treatment were studied using X-ray photoelectron spectroscopy. The possible mechanism regarding the action of ozone for the decolorization is discussed.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3860
Author(s):  
Mária Hagarová ◽  
Milan Vaško ◽  
Miroslav Pástor ◽  
Gabriela Baranová ◽  
Miloš Matvija

Corrosion of boiler tubes remains an operational and economic limitation in municipal waste power plants. The understanding of the nature, mechanism, and related factors can help reduce the degradation process caused by corrosion. The chlorine content in the fuel has a significant effect on the production of gaseous components (e.g., HCl) and condensed phases on the chloride base. This study aimed to analyze the effects of flue gases on the outer surface and saturated steam on the inner surface of the evaporator tube. The influence of gaseous chlorides and sulfates or their deposits on the course and intensity of corrosion was observed. The salt melts reacted with the steel surface facing the flue gas flow and increased the thickness of the oxide layer up to a maximum of 30 mm. On the surface not facing the flue gas flow, they disrupted the corrosive layer, reduced its adhesion, and exposed the metal surface. Beneath the massive deposits, a local overheating of the inner surface of the evaporator tubes occurred, which resulted in the release of the protective magnetite layer from the surface. Ash deposits reduce the boiler’s thermal efficiency because they act as a thermal resistor for heat transfer between the flue gases and the working medium in the pipes. The effect of insufficient feedwater treatment was evinced in the presence of mineral salts in the corrosion layer on the inner surface of the tube.


2021 ◽  
Vol 11 (7) ◽  
pp. 2961
Author(s):  
Nikola Čajová Kantová ◽  
Alexander Čaja ◽  
Marek Patsch ◽  
Michal Holubčík ◽  
Peter Ďurčanský

With the combustion of solid fuels, emissions such as particulate matter are also formed, which have a negative impact on human health. Reducing their amount in the air can be achieved by optimizing the combustion process as well as the flue gas flow. This article aims to optimize the flue gas tract using separation baffles. This design can make it possible to capture particulate matter by using three baffles and prevent it from escaping into the air in the flue gas. The geometric parameters of the first baffle were changed twice more. The dependence of the flue gas flow on the baffles was first observed by computational fluid dynamics (CFD) simulations and subsequently verified by the particle imaging velocimetry (PIV) method. Based on the CFD results, the most effective is setting 1 with the same boundary conditions as those during experimental PIV measurements. Setting 2 can capture 1.8% less particles and setting 3 can capture 0.6% less particles than setting 1. Based on the stoichiometric calculations, it would be possible to capture up to 62.3% of the particles in setting 1. The velocities comparison obtained from CFD and PIV confirmed the supposed character of the turbulent flow with vortexes appearing in the flue gas tract, despite some inaccuracies.


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


Sign in / Sign up

Export Citation Format

Share Document