An Experimental Study on Pervious Concrete

2019 ◽  
Vol 1 (6) ◽  
pp. 185-191
Author(s):  
Amirthagadeshwaran G ◽  
Ramesh S ◽  
Selvi K

Pervious concrete is a type of concrete with high porosity. It is used for concrete flatworks application that allows the water to pass through it, thereby reducing the runoff from a site and allowing ground water recharge. The high porosity is attained by highly interconnected voids content. Pervious concrete has water to cementicious material ratio of 0.36. The mixture is composed of cementicious materials, coarse aggregates and water with no fine aggregates. In this paper works porous concrete with fly ash as a blended material is tested for strength and permeability for assessing the adaptability of fly ash as a substitute material to cement. The percentage of fly ash is varied from 10% and 20%. Various tests like compressive strength, tensile strength and water permeability are done on the specimens and results are discussed.

Author(s):  
Ayapilla Narasimha Murthy

This paper addresses two aspects namely a new method for manufacturing of percolating concrete blocks using different proportions of concrete mixture such as Portland cement, Coarse aggregates, fine aggregates, limestone, and water have been designed. Apart from this an attempt has also been made by adding small quantities of additives such as fly ash, rice husk ash etc. for its strength and suitability on par with the normal Concrete blocks. Another is a partial replacement of cement with supplementary cementation materials such as fly ash and metakaolin in different proportions for reducing high grade cement consumptions been proposed. The design of a Pervious Concrete is made in such a way that it allows the entire surface run off water to percolate down without retaining any drop/quantity in it. Thus, it is named as water percolating Pervious Concrete/ porous concrete. An alternative for reducing cement usage in concrete makes concrete eco-friendly. Thus, there comes an idea of partially replacing cement with supplementary cementations materials, The concern has been growing in recent years towards reducing the pollutants in water conservation and the environment. The continual urbanization has led to the increase in impervious surface area of the cities, further leading to blockage in percolation of precipitation from rainfall. This result is excess surface run off. To counteract this, pervious concrete is the solution. Hence, the pervious concrete having 15% to 35% interconnected pores by volume, allows direct infiltration of water through its structure. Since the strength of this block for highway suitability of roads is not yet tested. The main aim of this paper is to improve the strength characteristics of porous concrete. However, on comparison, with the published data it is suitable for foot paths/ pathways and parking lots and as driveways in the residential and small rural areas where less vehicular traffic. This will help in reducing the risk of water clogging and recharges the nearby ground water level. The Maintenance of the slab is also minimum and can be repaired and cleaned easily. Thus, it is worthy and useful in many ways


Abstract. No-fine concrete (also called as pervious concrete or porous concrete) is a lightweight concrete made up of primary binder and coarse aggregates with little or no sand. Due to the reduced amount or absence of fines, it produces large number of voids which improves permeability to greater extent. Hence this type of concrete can be used in pavements and in parking lots. The literature review is carried out to study the physical and mechanical properties of no-fine concrete with additives. Various reports were collected and studied about variation in physical and mechanical properties of pervious concrete with different additives. Additives may be either mineral additives (fly ash, silica fumes, rice husk ash etc..,) or chemical additives (plasticizers, super plasticizers, retarders etc..,). Our project involved the utilization of recycled coarse aggregates, fly ash and rice husk in no-fine concrete. After this study, it was concluded that ‘upon the addition of additives, it increases permeability by decreasing its strength and vice-versa’. Balancing its permeability and strength remains challenging.


Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates


Author(s):  
Gregory A. Sholar ◽  
Gale C. Page ◽  
James A. Musselman ◽  
Patrick B. Upshaw ◽  
Howard L. Moseley

The Florida Department of Transportation uses long-established test procedures to determine the maximum specific gravity (Gmm) and bulk specific gravity (Gmb) of asphalt mixtures and the bulk specific gravity (Gsb) of aggregates. The CoreLok, a vacuum-sealing device that can be used to determine these properties, was evaluated by the department for these test procedures. With respect to the Gmm test procedure, for mixtures containing nonabsorptive granites, the CoreLok determined results equivalent to those of the department's test procedure. However, for mixtures containing absorptive limestones, the CoreLok determined higher Gmm values than did the department's test procedure. The apparent reason for the discrepancy is that the CoreLok does not determine a saturated surface dry condition of the sample. With respect to the aggregate specific gravity test procedures, the CoreLok provided test results equivalent to the department's test procedure for the nonabsorptive fine aggregates only. For the absorptive fine aggregates and all of the coarse aggregates, the CoreLok determined Gsb test results significantly different from those of the department's test procedures. The CoreLok may be suitable for determining Gmb for coarse-graded compacted specimens with high porosity and air voids. There are concerns with the accuracy of the CoreLok results because of the bridging effect of the plastic bag over the large surface voids and because of the CoreLok's significant underestimation of the specific gravity of a solid aluminum cylinder.


2019 ◽  
Vol 27 (2) ◽  
pp. 1-8
Author(s):  
Ramamohanrao Pannem ◽  
Padmaja P. Kumar

AbstractBased on the available literature, a simple method was adopted to calculate the packing density of aggregates and thereby reduce their void content by optimising their packing aggregates and by using two different sizes of coarse aggregates and fine aggregates. This study provides an understanding of the way in which the shape of aggregates affects the properties of self-compacting concrete (SCC). The fresh, hardened, and durable properties of SCC with normal and lightweight fly ash coarse aggregates are found at the corresponding age of the curing. Their values were compared with respect to SCC containing normal aggregates. A mix with fly ash aggregates was found to have better fresh concrete properties due to the round shape of the aggregates. After the packing of the aggregates, this mix was found to have better mechanical and durability properties than all the other concrete mixes.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Aaliya Navaz ◽  
Anju Paul

Pervious concrete is a mixture of cement, coarse aggregate mixed with water. The absence of fine aggregate helps increase the voids and water can pass through these gaps and reaches to ground level. The use of recycled coarse aggregates from construction and demolition is a sustainable solution with many environmental benefits and also reduces the number of virgin aggregates to be created, hence reducing the extraction of natural resources. This paper reviews the research developments of pervious concrete by replacing natural aggregates with different percentages of recycled coarse aggregate. The papers under consideration of review have conducted to identify various properties of pervious concrete such as mechanical and hydrological properties. Keywords— pervious concrete, compressive strength, permeability


2018 ◽  
Vol 917 ◽  
pp. 297-302
Author(s):  
Jul Endawati ◽  
R. Utami ◽  
Rochaeti

Fly ash as a pozzolanic waste material can be utilized to substitute part of Portland cement in concrete mixture. The concrete paving industry utilizes the fly ash up to 50% (by weight) of the total binder. This study aims to obtain the characteristics of fly ash applications for pervious concrete. The composition of the binder developed based on the optimal proportion of fly ash from the previous study and the maximum of fly ash percentage used by the local paving industry in general. Other mix variations were made of the same binder composition with the addition of 6% of fine aggregates. The compressive strength of pervious concrete which binder composed of 63% portland cemet composite-25% fly ash-12% silica fume gained at 28 days, was not much different from the compressive strength of the pervious concrete without fine aggregate and with the binder composition of 50% FA-50% PCC and 0% SF. The value of the compressive strength test of the pervious concrete without fine aggregate is still within the range of compressive strength values ​​according to the ACI 522 R-10. The permeability rate of the pervious concrete is in the range of permeability research result of Chopra, 2013 (0.97 ÷ 1.90 cm/sec), but still higher compared to permeability rate gained by Dewoolkar, 2009 (0.83 ÷ 0.98 cm/sec).


Author(s):  
Muhammad Juldin ◽  
Akbar Alfa

AbstractConcrete is a composite material (mixture) consisting of cement, coarse aggregates, fine aggregates and water. The concrete formation mixture is designed in such a way as to produce fresh concrete that is easy to work with and meets the plan's compressive strength after hardening.The cement used is PCC type cement, although the composition of cement in concrete is only about 10%, but the role of cement is very important in concrete. Aggregates are mineral granules originating from nature or artificial which have a function as a mixture of fillers in concrete. The aggregate of the concrete mixture filler is divided into fine aggregates used from Javanese Inhu and coarse aggregates from Tanjung Balai Karimun. The fine aggregate is usually in the form of sand that passes through a filter with a diameter of 4.75 mm or 5 mm, while coarse aggregates do not pass through the filter. The water used is well water from Kateman District, Keritang District and Tembilahan District, Indragiri Hilir Regency, Riau Province.The compressive strength of concrete is the amount of load per unit area which causes the concrete specimen to break and there is no more carrying capacity. The average compressive strength of 28 days of cube specimens with well water in Kateman District = 491 kg / cm2, Keritang District = 469 kg / cm2 and Tembilahan District City = 475 kg / cm2.   AbstrakBeton merupakan bahan komposit (campuran) yang terdiri dari semen, agregat kasar, agregat halus dan air. Campuran bahan-bahan pembentukan beton dirancang sedemikian rupa, sehingga menghasilkan beton segar  yang mudah  dikerjakan  dan  memenuhi  kekuatan  tekan  rencana  setelah mengeras.Semen yang digunakan adalah semen tipe PCC, walaupun komposisi semen dalam beton hanya sekitar 10%, namun peran semen sangat penting dalam beton. Agregat adalah butiran mineral yang berasal dari alam atau buatan yang memiliki fungsi sebagai bahan pengisi campuran pada beton. Agregat pengisi campuran beton terbagi atas agregat halus yang digunakan berasal dari Japura Inhu dan agregat kasar berasal dari Tanjung Balai Karimun. Agregat halus biasanya berupa pasir yang lolos saringan dengan diameter 4,75 mm atau 5 mm, sedangkan agregat kasar tidak lolos saringan tersebut. Air yang digunakan yakni air sumur berasal dari Kecamatan Kateman, Kecamatan Keritang dan Kecamatan Tembilahan Kota Kabupaten Indragiri Hilir Provinsi Riau.Kuat tekan beton adalah besarnya beban per satuan luas yang menyebabkan benda uji beton pecah dan tidak ada lagi daya dukungnya. Hasil kuat tekan rata-rata umur 28 hari benda uji kubus dengan air sumur Kecamatan Kateman = 491 kg/ cm2, Kecamatan Keritang = 469 kg/cm2dan Kecamatan Tembilahan Kota = 475 kg/cm2.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012244
Author(s):  
Kuldeep Kumar ◽  
Manjeet Bansal ◽  
Rishav Garg ◽  
Rajni Garg

Abstract Porous concrete is an amalgamation of coarse aggregate, Portland cement, and water, which permits rainfall water to permeate through the surface and into the ground before it runs off. Porous concrete encompasses little or no fine aggregates and adequate cementitious fixative to coat the coarse aggregate while keeping the voids interconnected. IRC 44-2017 states that range of permeability for pervious concrete should be from 0.135 cm/second to 1.22 cm/second and array of compressive strength should be 5MPa - 25MPa. In this experimental study, two properties of no fine concrete namely compressive strength and porousness at the curing age of 7th & 28rd days has been targeted. Compressive strength and Infiltration tests were conducted on the pervious concrete of grade M10 and M15 by keeping variation of fine aggregates of 0% - 5%. We observed that fines aggregate help to rise the compressive strength of porous concrete but decrease the permeability. Thus, by careful optimization of the mix, pervious concrete can be obtained for suitable use in low strength load.


In the present study, dense graded bituminous mix specimens are prepared using natural aggregate as coarse aggregates, bottom ash as fine aggregates and coal ash as filler. Proportion of aggregate for dense graded bituminous macadam (DBM) grading has been considered as per MORTH (2013) having nominal maximum aggregates size (NMAS) 26.5 mm. The bitumen used is VG20. Firstly, bottom ash and fly ash was used as fine replacement in DBM mix. In this, the total coal ash content is taken as 35% by weight of the total mix, from which the percentage of fly ash as mineral filler is fixed, i.e. 5% of weight of the mix. The bottom ash content is varied according to the DBM gradation specified in MORTH (2013). Detailed study with Marshall test results were used to determine the Marshall characteristics, optimum binder content and also optimum use of coal ash. The maximum stability value of 11.826 kN was achieved when 14% of coal ash by weight of the mix was mixed for preparing DBM samples. It is finally observed that results are not only satisfactory, but also much improved engineering properties with coal ash as fine aggregate and filler. Utilization of non-conventional aggregate like coal ash may help to find a new way of bituminous pavement construction.


Sign in / Sign up

Export Citation Format

Share Document