scholarly journals Physical Activity and Oxidative Stress - A Potential Role of L- Carnitine as an Antioxidant: A Review

2021 ◽  
Vol 8 (S1-Feb) ◽  
pp. 12-18
Author(s):  
Jyothsna Karanth ◽  
Dakshayini C

Regular physical activity, along with a balanced diet, formsan important factor for the maintenance of good health. However, strenuousexerciseincreases the production of free radicals (FR) and reactive oxygen and nitrogen species (RONS), leads to toxicity, resulting in chronic fatigue, injuries. The overproduction of RONS is involved in muscular fatigue, many diseases, and aging. However, FRs are essential for the functioning of the immune system and certain metabolic functions.The increase in oxidants compared to antioxidant leads to oxidative stress. Nowadays, antioxidants are supplemented to reduce muscle damage incurred during exercise, which has drawn the attention of the athletic population. L- Carnitine being ergogenic, acts as an antioxidant during recovery from exercise, thereby attenuate oxidative stress, which may then decrease exercise-induced muscle damage. Despite increasing research on antioxidant properties for carnitine in several pathologies such as diabetes, hypertension, renal, neurodegenerative conditions, and liver disease, less has been documented on it against oxidative stress induced by exercise. This review may help researchers who are interested in athletic performance enhancement and sports nutrition.

Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1353 ◽  
Author(s):  
Cristina Nocella ◽  
Vittoria Cammisotto ◽  
Fabio Pigozzi ◽  
Paolo Borrione ◽  
Chiara Fossati ◽  
...  

The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals’ lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant–antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.


2017 ◽  
Vol 42 (7) ◽  
pp. 700-707 ◽  
Author(s):  
Roberto C. Leonardo-Mendonça ◽  
Javier Ocaña-Wilhelmi ◽  
Tomás de Haro ◽  
Carlos de Teresa-Galván ◽  
Eduardo Guerra-Hernández ◽  
...  

Previous data showed that the administration of high doses of melatonin improved the circadian system in athletes. Here, we investigated in the same experimental paradigm whether the antioxidant properties of melatonin has also beneficial effects against exercise-induced oxidative stress and muscle damage in athletes. Twenty-four athletes were treated with 100 mg·day−1 of melatonin or placebo 30 min before bedtime during 4 weeks in a randomized double-blind scheme. Exercise intensity was higher during the study that before starting it. Blood samples were collected before and after treatment, and plasma was used for oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), nitrite plus nitrate (NOx), and advanced oxidation protein products (AOPP) determinations. Glutathione (GSH), glutathione disulphide (GSSG) levels, and glutathione peroxidase (GPx) and reductase (GRd) activities, were measured in erythrocytes. Melatonin intake increased ORAC, reduced LPO and NOx levels, and prevented the increase of AOPP, compared to placebo group. Melatonin was also more efficient than placebo in reducing GSSG·GSH−1 and GPx·GRd−1 ratios. Melatonin, but not placebo, reduced creatine kinase, lactate dehydrogenase, creatinine, and total cholesterol levels. Overall, the data reflect a beneficial effect of melatonin treatment in resistance-training athletes, preventing extra- and intracellular oxidative stress induced by exercise, and yielding further skeletal muscle protection against exercise-induced oxidative damage.


1999 ◽  
Vol 24 (3) ◽  
pp. 249-266 ◽  
Author(s):  
Allan H. Goldfarb

Several mechanisms have been forwarded to explain the etiology of exercise-induced muscle damage. Free-radical mediated processes appear to be an important component of the inflammatory mediated response. Free radicals have also been demonstrated to be a contributing factor in the loss of calcium homeostasis within the cell. Therefore, one of the proposed treatments for preventing or reducing the extent of this damage is the intervention of free-radical mediated processes. Antioxidants are agents that typically work to prevent free-radical mediated alterations within cells by quenching free radicals. The traditional dietary antioxidants most commonly investigated to inhibit free-radical damage are vitamin E, vitamin C, and beta carotene. Other nutritional agents have also been noted to posses antioxidant properties. Isoflavonoids and some phytochemicals have been proposed to contain antioxidant properties. This paper briefly reviews some aspects of these agents and their role, either proven or proposed, in the prevention of oxidative stress and muscle damage. Key words: vitamin E, vitamin C, beta carotene, genistein, oxidative stress


2018 ◽  
Vol 6 (9) ◽  
pp. 1594-1598 ◽  
Author(s):  
Shreef G. N. Gabrial ◽  
Marie-Christine R. Shakib ◽  
Gamal N. Gabrial

BACKGROUND: Strenuous non-regular exercise increases reactive oxygen species ROS level leading to an impaired balance between the endogenous antioxidant defence system and the free radicals production. Antioxidants intake can detoxify the peroxides produced during exercise, attenuating the inflammatory responses and therefore may prevent exercise-induced muscle damage. AIM: The purpose of this study was to determine the role of vitamin C intake in attenuating markers of muscle damage, oxidative stress and inflammatory responses in male adolescents performing the non-regular strenuous exercise. MATERIAL AND METHODS: Twenty recreationally active male adolescents were assigned to participate in the study. Eligible subjects performed strenuous recreational exercise (2-3 times per week) were randomly divided into two groups: The vitamin C (VC) group that consumed 500 mg of capsulated vitamin C after breakfast for a period of 90 days and the placebo (PL) group that consumed identical capsules in form and aspect that contained 500 mg of maltodextrin for the same period. Aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH) were assessed for muscle damage. Malondialdehyde (MDA) was evaluated as a marker of lipid peroxidation. Plasma creatinine, uric acid and urea were determined to monitor kidney function. C-reactive protein, a marker of systemic inflammation was also measured. RESULTS: In comparison between PL and VC groups, the plasma concentrations of muscle damage markers, oxidative stress markers, kidney function and inflammatory markers showed no significant difference in their baseline values (P > 0.05). The plasma concentrations of CK, LDH, MDA, urea, uric acid and CRP were significantly decreased in the VC group (P < 0.05) as compared to their values before the intake of vitamin C. CONCLUSION: The present results support the intake of vitamin C as an antioxidant for attenuating exercise-induced muscle damage, oxidative stress and inflammatory markers in male adolescents performing the strenuous physical activity.


2021 ◽  
Vol 12 (7) ◽  
pp. 3132-3141
Author(s):  
Hongkang Zhu ◽  
Wenqian Xu ◽  
Ning Wang ◽  
Wenhao Jiang ◽  
Yuliang Cheng ◽  
...  

We investigated the role of Maca aqueous extract on muscle during exercise-induced fatigue both in vivo and in vitro..


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


2017 ◽  
Vol 63 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Efi Koloverou ◽  
◽  
Konstantinos Tambalis ◽  
Demosthenes B. Panagiotakos ◽  
Ekavi Georgousopoulou ◽  
...  

2019 ◽  
Vol 41 (5) ◽  
pp. 859-859
Author(s):  
Erum Shireen Erum Shireen ◽  
Wafa Binte Ali Wafa Binte Ali ◽  
Maria Masroor Maria Masroor ◽  
Saeeda Bano Saeeda Bano ◽  
Samina Iqbal Samina Iqbal ◽  
...  

Acute exposure to stress is connected to many disorders that promote the toxicity of oxygen radical generators leading to increase in the levels of enzymes and also the activation of the HPA axis. The present study uses a preclinical approach to elucidate some prospective stress-induced behavioral and biochemical effects. The aim of current study was to investigate the relationship between stress and behavioral changes after exposing animals to 2h immobilization stress. We also evaluated the concentration of corticosterone, glucose and endogenous leptin levels in unstressed and stressed animals to explore the possible role of HPA axis in the modulation of stressed induced behavioral deficits. Rats were divided into stressed and unstressed groups. Behavioral activities were monitored in open field activity and light dark transition box after the termination of 2h immobilization period. Animals were then decapitated and plasma samples were collected for catalase, SOD, corticosterone, and glucose estimation. Results showed that exposure to acute stress produced a significant decrease in the activity of rats in the novel environment (open field) and light dark transition box. On the other hand, concomitant elevated level of peripheral markers of oxidative stress such as oxidative enzymes, corticosterone and endogenous leptin were also observed. Therefore, current study seems to suggest an important role of compounds having antioxidant properties for the treatment of stress and related disorders.


Sign in / Sign up

Export Citation Format

Share Document