Pendekatan Hidrogeomorfologi Dan Pendugaan Geolistrik Untuk Identifikasi Potensi Airtanah Di Jedong Malang

2021 ◽  
Vol 3 (2) ◽  
pp. 84-96
Author(s):  
Ferryati Masitoh ◽  
Alfi Nur Rusydi ◽  
Ilham Diki Pratama

This study aims to identify the potential groundwater in Jedong, Malang, East Java. The hydrogeomorphological approach is a suitable approach to describe the relationship between hydrological and geomorphological processes on and below the earth's surface. The survey of geoelectricity complements the hydrogeomorphological approach. It will give a better description of the groundwater conditions below the earth's surface. Based on the research, there are 2 hydrogeomorphological units in the study area, which are: Volcanic Foot Valley Unit and Volcanic Foot Ridge Unit. The best groundwater potential is in Volcanic Foot Valley Hydrogeomorphological unit, namely Awar-awar Valley and Cokro Valley. The valleys are dominated by gully erosion and landslides. They have surface deposits up to a depth of 7 meters, and lots of outcrops of breccia, pumice, and andesite boulders. The valley’s springs discharge between 56 - 198 m3/day. The average infiltration rate in the valley is 1776 mm / hour, with sandy soil material. The best aquifer consisting of sandy material is more than 10 meters in depth, based on the geoelectrical survey. Water in the aquiclude layer, cannot be exploited because it is breccia and tuff material. The Sawah valley cannot be exploited further because the groundwater potential is very low. This can be identified by the thick water outflow seepage. In the Volcanic Foot Ridge Hydrogeomorphological unit, the groundwater potential is also very small. Hydrogeomorphically, water will flow down the slope to the valley. It will reduce the infiltration rate. In general, the ridge area is only used for settlement, while the slopes are used for dryland agriculture. The geoelectric analysis results show that the groundwater potential is at a depth of more than 45 meters. This research’s results show that the combination of the hydrogeomorphological approach and the geoelectric use will provide a better description of the potential groundwater. 

2020 ◽  
Vol 21 (2) ◽  
pp. 204-212
Author(s):  
Heru Sri Naryanto ◽  
Puspa Khaerani ◽  
Syakira Trisnafiah ◽  
Achmad Fakhrus Shomim ◽  
Wisyanto Wisyanto ◽  
...  

ABSTRACTGeostech Building, as an office and laboratory facility, requires a source of clean water from groundwater related to the limited supply of clean water from the PDAM. Due to the needs of freshwater from groundwater origin, data and information are needed regarding the potential groundwater in the area, including aquifer configuration, depth, and groundwater potential. The presence of groundwater is not distributed through every area, and it's related to the geological and geohydrological conditions. One of the geophysical methods that can describe subsurface is 2D geoelectric methods. This method can distinguish and analyze rock types, geological structures, groundwater aquifers, and other important information based on the characteristics of the electricity of rocks by looking at the value of the type of resistance. In this measurement, the Wenner Alpha configuration has been used, where the arrangement of A-B current electrodes and M-N potential electrodes have constant spacing. From the measurement results, it can be interpreted that there is a low resistivity layer containing porous groundwater as an aquifer. Based on regional geological data, it has been estimated that this layer is in the form of sandy tuff (0-1.5 ohm-m). The exploitation of groundwater with drilling is expected to reach the aquifer's upper layer at depth, starting from 11.5-13 meters. The groundwater aquifer thickness cannot be ascertained because of the penetration of the lower depth of 2D geoelectric measurements truncated by the constraint of a maximum stretch of cable. The upper layer of the aquifer contains a turned layer of fine tufa and medium tuff, which is impermeable, coarse tuff, and mixed soil with varying thickness at the upper layer.Keywords: 2D geoelectric, aquifer, potential groundwater, Geostech  ABSTRAKGedung Geostech sebagai sarana perkantoran dan laboratorium memerlukan sumber air bersih dari air tanah terkait dengan terbatasnya suplai air bersih dari PDAM. Kebutuhan air bersih berasal dari air tanah, maka diperlukan data dan informasi mengenai kondisi potensi air tanah di kawasan tersebut termasuk konfigurasi akuifer, kedalaman, dan potensi air tanahnya. Keberadaan air tanah tidaklah merata untuk setiap tempat dan sangat terkait dengan kondisi geologi dan geohidrologinya. Salah satu metode geofisika yang dapat memberikan gambaran kondisi bawah permukaan adalah dengan metode geolistrik 2D. Metode ini dapat membedakan dan menganalisis jenis batuan, struktur geologi, akuifer air tanah, dan informasi penting lainnya berdasarkan sifat kelistrikan batuan dengan melihat nilai tahanan jenisnya. Dalam pengukuran ini digunakan konfigurasi Wenner Alpha, dimana susunan elektroda arus A dan B dan elektroda potensial M dan N mempunyai spasi yang konstan. Dari hasil pengukuran dapat diinterpretasikan adanya lapisan dengan resistivitas rendah yang mengandung air tanah dan bersifat porous sebagai akuifer. Berdasarkan data geologi regional diperkirakan lapisan ini berupa tuf pasiran (0-1,5 ohm-m). Pengambilan air tanah dengan pemboran diperkirakan akan mengenai batas atas lapisan akuifer pada kedalaman 11,5-13 meter. Ketebalan akuifer air tanah tidak bisa dihitung karena penetrasi kedalaman pengukuran geolistrik 2D terbatasi oleh bentangan elektroda di permukaan. Lapisan di atas akuifer merupakan lapisan selang-seling tuf halus dan tuf sedang yang kedap air, tuf kasar, dan pada bagian paling atas merupakan tanah urugan dengan ketebalan bervariasi.Kata kunci: Geolistrik 2D, akuifer, potensi air tanah, Geostech  


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 538
Author(s):  
Zihao Guo ◽  
Jianen Gao ◽  
Pengcheng Sun ◽  
Shaohui Dou ◽  
Juan Li ◽  
...  

Gully Land Consolidation (GLC) is a proven method to create farmlands and increase crop yields in the Loess Hilly and Gully Region, China. However, GLC influences phreatic water transformation and might cause the farmlands water disasters, such as salinization and swamping. For exploring the influence of GLC on phreatic water transformation and mitigating disasters, a series of indoor experiments were conducted in the artificial rainfall hall. Then, we simulated the phreatic water transformation patterns under more conditions with HYDRUS-3D. Finally, an engineering demonstration in the field was performed to validate our research. The indoor experiments indicated that GLC could increase phreatic water outflow rate 4.39 times and phreatic water coefficient (PWC) 2.86 times with a considerable delay. After calibration and validation with experimental data, the HYDRUS-3D was used to simulate phreatic water transformation under more soil thickness and rainfall intensities. Accordingly, we summarized the relationship among PWC, rainfall intensities, and soil thickness, and therefore suggested a blind ditch system to alleviate farmlands disasters. Field application showed that a blind ditch system could avoid disasters with 3.2 times the phreatic water transformation rate compared to loess. Our research provides implications for sustainable land uses and management in the region with thick soil covers.


2012 ◽  
Vol 518-523 ◽  
pp. 39-43
Author(s):  
Xiao Guang Zhao ◽  
Yuan Yuan Guan ◽  
Wen Yu Huang

In this paper, simulated experiments were performed in pots by using soil materials in different conditions of film remnant. Based on the research on soil microorganism quantity trends of soil enzyme activities were analyzed systematically: soil without film remnant, soil with film remnant for 5, 10, 15 and 20 years. By analyzing crop progress, the relationship with soil material was studied, in order to provide scientific basis for the variation laws between different conditions of film remnant and the activity of soil enzyme.


1995 ◽  
Vol 73 (2) ◽  
pp. 155-161 ◽  
Author(s):  
G. Y. Zhao ◽  
M. Durić ◽  
N. A. Macleod ◽  
E. R. ØRskov ◽  
F. D. Deb. Hovell ◽  
...  

Four sheep sustained by intragastric nutrition were used to study saliva secretion and the relationship between osmotic pressure in the rumen and net water transport across the rumen wall. Different concentrations of buffer were infused into the rumen to change the rumen osmotic pressure. Salivary secretion was estimated from entrance of P into the rumen. Net water transport across the rumen wall was calculated as the difference between water inflow and water outflow from the rumen. A negative linear relationship between the rumen osmotic pressure (X, mOsm/kg) and the water absorption across the rumen wall (Y, ml/h) was found: Y = (394 SE 8·3)–(l·22 SE 0·03) X, r20·83, (P < 0·001), and a positive linear relationship was found between the rumen osmotic pressure (X, mOsm /kg) and the outflow rate of rumen fluid (Y, ml/h): Y = (34·0 SE 8·0) + (0·97 SE 0·03), X, r2 0·56, (P < 0·001). The implication is that rumen osmotic pressure can be a key factor in the control of the net water transport across the rumen wall, the outflow of rumen fluid to omasum and the rumen liquid dilution rate. A method is suggested by which salivary secretion in sheep may be calculated from the water balance in the rumen.


Warta Geologi ◽  
2021 ◽  
Vol 47 (2) ◽  
pp. 103-112
Author(s):  
S.N. Yusuf ◽  
◽  
J.M. Ishaku ◽  
W.M. Wakili ◽  
◽  
...  

Karlahi is largely underlain by granites and migmatites gneiss of the Adamawa Massif. The area lies west of Benue Trough and east of Cameroon volcanic line. The aim of this paper is to determine hydraulic properties of water bearing layer using parameters derived from Dar-Zarrouk equation and characterized them into groundwater potential zones. The resistivity values of the weathered and slightly weathered layers which make up the water bearing layers were added and an average was taken and used as the resistivity of the water bearing formation in computation of Dar-Zarrouk parameters in Karlahi area. The values of resistivity of water bearing formation ranged from 18 to 4963 Ωm with an average resistivity value of 549 Ωm and the thickness of the water bearing formation ranges from 21 to 32 m with an average thickness of 24.5 m. Conductivity values range from 0.000201 to 0.05509 (σ) while the longitudinal conductance range from 0.00483 to 1.2363 Ω-1, the transverse resistance ranges from 407 to 123504.3 Ωm2. The hydraulic conductivity and transmissivity values range from 0.14 to 25.87 m/day and 3.28 to 580.4 m2/day respectively. The longitudinal conductance values in Karlahi area revealed poor to good with an average longitudinal conductance value that is moderate. High transverse resistance values are located in the central and southern part of Karlahi area while low values are located in the eastern part. The spatial distribution map of transmissivity in the area revealed moderate to high transmissivity values in the north central part and a negligible to low transmissivity in southern part, extreme northeastern part. The groundwater potential map of Karlahi area shows negligible to weak potential groundwater zones in SW and SE, moderate potential in the central to northern part of Karlahi area.


2008 ◽  
Vol 133 (2) ◽  
pp. 278-283 ◽  
Author(s):  
Ben Hong Wu ◽  
Hai Qiang Huang ◽  
Pei Ge Fan ◽  
Shao Hua Li ◽  
Guo Jie Liu

Five peach cultivars [Prunus persica (L.) Batch] with different maturity dates were subjected to sink–source manipulation by girdling to isolate 1-year-old fruit-bearing shoots. Four treatments were performed: fruit were removed (−fruit); one fruit (+1 fruit) and two fruit (+2 fruit) were kept inside two girdling cuts; and two fruit were kept outside two girdling cuts (−fruit*). Photosynthetic responses for the five cultivars were similar and did not show genotypic differences. Generally, net photosynthetic rate (Pn), stomatal conductance (g s), and transpiration rate (E) were higher, and leaf temperature (Tl) was lower in +2 fruit than in +1 fruit, followed by −fruit and −fruit* which were not different. The results also indicated that water outflow from fruit into leaves did not influence photosynthesis, and lower photosynthesis in −fruit treatment was not due to water status of source leaves influenced by removing fruit. Pn tended to increase with Tl until Tl reached a critical level. Beyond the critical temperature level, Pn generally decreased. The critical Tl was roughly identified as 34–37 °C for the five cultivars. Both higher and lower substomatal CO2 (Ci) levels occurred in −fruit and −fruit* treatments than in +1 fruit and +2 fruit treatments, indicating that decreased Pn could be due to both nonstomatal and stomatal limitations. Further analysis of the relationship between Ci and photosynthetically active radiation (PAR) showed that nonstomatal limitation under low sink demand took place mostly under high PAR. Thus, high light intensity, combined with Tl may play an important role in leaf photosynthetic regulation.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1523 ◽  
Author(s):  
Masato Oda ◽  
Burhanuddin Rasyid ◽  
Hide Omae

Crop residue incorporation increases stable soil pores and soil water infiltration and reduces surface water runoff and soil erosion. However, few studies have examined the relationship between crop residue incorporation and water infiltration. A previous study showed that water infiltration increases depending on the quantity of applied wheat straw. In this study, we examined whether the relationship is applicable to different crop residues in a crop rotation. We grew corn, rose grass, and okra in crop rotation under plastic film houses and measured the water infiltration rate at the time of ridge making. A strong correlation was found between the quantity of applied residue and the soil water infiltration rate (r = 0.953), although there are outliers in the case of no prior crop. However, aboveground biomass of the prior crop showed a stronger correlation with water infiltration rate (r = 0.965), without outliers. Previous studies have revealed the exponential relation between plant root mass and soil erosion. Our data also show a positive relationship between resistance to erosion and root mass when assuming that aboveground biomass is proportional to the underground biomass. The result also showed that the effect of the prior crop root mass disappears within the next crop period. Our results indicate that maintaining a large root biomass is crucial for reducing soil erosion.


2020 ◽  
Vol 22 (6) ◽  
pp. 1468-1484
Author(s):  
Abdelmadjid Boufekane ◽  
Hind Meddi ◽  
Mohamed Meddi

Abstract This work aims to identify the potential groundwater recharge zones in the Mitidja plain (north Algeria) using the multi-criteria approach. The analysis was based on the use of a geographical information system (GIS) and remote sensing to establish eight thematic maps, weighted, categorized and inserted, that allowed us to establish the potential zones’ map for groundwater recharge. Three potential groundwater recharge classes were defined corresponding, respectively, to low (26%), moderate (47%) and high (27%). The best groundwater potential zones are situated in the piedmont of the Blidean Atlas (the south of the study area), precisely, upstream near to wadis (wadi El Harrach, wadi Djemaa, wadi Mazafran) and the western aquifer limit, where the hydrogeological units are formed by the alluvium formation which is characterized by high hydraulic conductivity, high water flow, low slope, low drainage, low quantity transported sediments and good water quality. The obtained results, in this work, describe the groundwater recharge potential areas and supply information for a suitable mapping and the management of aquifer resources in the study area.


2020 ◽  
Vol 21 (2) ◽  
pp. 236-243
Author(s):  
Dian Purwitasari Dewanti ◽  
Wiharja Wiharja ◽  
Muhammad Hanif ◽  
Rudi Nugroho

ABSTRACTGeostech Building, as an office and laboratory facility, requires a source of clean water from groundwater related to the limited supply of clean water from the PDAM. Due to the needs of freshwater from groundwater origin, data and information are needed regarding the potential groundwater in the area, including aquifer configuration, depth, and groundwater potential. The presence of groundwater is not distributed through every area, and it's related to the geological and geohydrological conditions. One of the geophysical methods that can describe subsurface is 2D geoelectric methods. This method can distinguish and analyze rock types, geological structures, groundwater aquifers, and other important information based on the characteristics of the electricity of rocks by looking at the value of the type of resistance. In this measurement, the Wenner Alpha configuration has been used, where the arrangement of A-B current electrodes and M-N potential electrodes have constant spacing. From the measurement results, it can be interpreted that there is a low resistivity layer containing porous groundwater as an aquifer. Based on regional geological data, it has been estimated that this layer is in the form of sandy tuff (0-1.5 ohm-m). The exploitation of groundwater with drilling is expected to reach the aquifer's upper layer at depth, starting from 11.5-13 meters. The groundwater aquifer thickness cannot be ascertained because of the penetration of the lower depth of 2D geoelectric measurements truncated by the constraint of a maximum stretch of cable. The upper layer of the aquifer contains a turned layer of fine tufa and medium tuff, which is impermeable, coarse tuff, and mixed soil with varying thickness at the upper layer.Keywords: 2D geoelectric, aquifer, potential groundwater, Geostech  ABSTRAKGedung Geostech sebagai sarana perkantoran dan laboratorium memerlukan sumber air bersih dari airtanah terkait dengan terbatasnya suplai air bersih dari PDAM. Kebutuhan air bersih berasal dari airtanah, maka diperlukan data dan informasi mengenai kondisi potensi airtanah di kawasan tersebut termasuk konfigurasi akuifer, kedalaman, dan potensi airtanahnya. Keberadaan airtanah tidaklah merata untuk setiap tempat dan sangat terkait dengan kondisi geologi dan geohidrologinya. Salah satu metode geofisika yang dapat memberikan gambaran kondisi bawah permukaan adalah dengan metode geolistrik 2D. Metode ini dapat membedakan dan menganalisis jenis batuan, struktur geologi, akuifer airtanah, dan informasi penting lainnya berdasarkan sifat kelistrikan batuan dengan melihat nilai tahanan jenisnya. Dalam pengukuran ini digunakan konfigurasi Wenner Alpha, dimana susunan elektroda arus A dan B dan elektroda potensial M dan N mempunyai spasi yang konstan. Dari hasil pengukuran dapat diinterpretasikan adanya lapisan dengan resistivitas rendah yang mengandung airtanah dan bersifat porous sebagai akuifer. Berdasarkan data geologi regional diperkirakan lapisan ini berupa tuf pasiran (0-1,5 ohm-m). Pengambilan airtanah dengan pemboran diperkirakan akan mengenai batas atas lapisan akuifer pada kedalaman 11,5-13 meter. Ketebalan akuifer airtanah tidak bisa dihitung karena penetrasi kedalaman pengukuran geolistrik 2D terbatasi oleh bentangan elektroda di permukaan. Lapisan di atas akuifer merupakan lapisan selang-seling tuf halus dan tuf sedang yang kedap air, tuf kasar, dan pada bagian paling atas merupakan tanah urugan dengan ketebalan bervariasi.Kata kunci: Geolistrik 2D, akuifer, potensi airtanah, Geostech 


Sign in / Sign up

Export Citation Format

Share Document