scholarly journals Pengendali Putaran Turbin Pltmh Menggunakan Arduino

2020 ◽  
pp. 90-96
Author(s):  
Okta Andrica Putra

Research has been carried out to regulate / control the rotation of the turbine for this type of micro hydro power plant (PLTMH). This research was carried out during the dry season where water discharge greatly affects turbine rotation. This tool utilizes an optocoupler sensor, servo motor and 2x16 LCD. This system works based on the turbine rotation speed that is read on the sensor then controls the slope of the water fall using a DC motor. If thewater speed is low, the servo motor will turn CW up to a maximum slope of 75 degrees to produce maximum rotation and maximum power. This research does not focus on the magnitude of the resulting current source and the amount of water discharge

Author(s):  
Sudarman Sudarman ◽  
Wahyu Guszolil ◽  
Daryono Daryono ◽  
Muhammad Lukman

Micro Hydro Power (MHP) Plant is a small-scale power plant under 100 kW. Generally, MHP is built in a place that the electricity network has not touched. Many waterfalls in Taji Village are only used as tourist attractions. One of them is Coban Jahe waterfall which has a water discharge of 0.60567 m3/s in the dry season. Waterfall in Coban Jahe was used and planned as Micro Hydro Power Plant, it was called as MHP. Potential electric power generated from the MHP Coban Jahe Waterfall is 14.0368 kW with an effective head of 3.4742 m. The results show from the financial analysis, the construction of MHP is quite feasible with NPV of Rp. 45,676,769, BCR of 1.0852, which means it is feasible to be continued, the Payback Period is 9 years which does not exceed the project life, and the IRR obtained is 10,0087% which the projects are feasible and profitable to build.


2020 ◽  
Vol 2 (2) ◽  
pp. 30-38
Author(s):  
Susanto Ointu ◽  
Frengki Eka Putra Surusa ◽  
Muammar Zainuddin

Listrik merupakan kebutuhan yang sangat berperan penting bagi kehidupan manusia. Sehingga itu rencananya diwilayah terpencil tersebut akan diadakan pembangkit listrik yang ramah lingkungan, dan juga termasuk energi terbarukan. Kecamatan Pinogu terdapat bendungan untuk bisa dimanfaatkan sebagai sumber Pembangkit Listrik Tenaga Mikrohidro (PLTMH). Tujuan dari penelitian ini adalah untuk mengetahui seberapa besar potensi air untuk menghasilkan energi listrik pada bendungan yang dapat menunjang elektrifikasi di Desa Pinogu Kecamatan Pinogu Kabupaten Bone Bolango. Metode yang digunakan dalam menghitung debit air pada bendungan tersebut dengan metode apung dan pengukuran menggunakan stopwatch. Berdasarkan hasil pengukuran pada lokasi bendungan di Desa Pinogu Kecamatan Kabupaten Bone Bolango, menghasilkan potensi air dengan debit air maksimal sebesar 1,67 m3/detik, dengan tinggi terjun 3,57 meter, maka total daya maksimal yang diperoleh adalah 29,83 KW dan dapat melayani 99 rumah dengan daya masing-masing rumah sebesar 300 Watt.Kata Kunci — studi kelayakan, PLTM, Desa Pinogu.Electricity is a necessity that plays an important role in human life. So that the plan is in the remote region will be held power plants that are environmentally friendly, and also include renewable energy. Pinogu Subdistrict has a dam to be used as a source of Micro Hydro Power Plant (PLTMH). The purpose of this study is to find out how much the potential of water to produce electrical energy in dams that can support electrification in Pinogu Village, Pinogu District, Bone Bolango Regency. The method used in calculating the flow of water in the dam with the floating method and measurement using a stopwatch. Based on the results of measurements at the location of the dam in Pinogu Village, District of Bone Bolango District, it produces water potential with a maximum water discharge of 1.67 m3 / sec, with a waterfall height of 3.57 meters, then the total maximum power obtained is 29.83 KW and can serves 99 homes with a power of 300 Watt each.Keywords - feasibility study, PLTM, Pinogu Village.


2019 ◽  
Author(s):  
Rosnita Rauf

FEASIBILITY STUDY OF MINI HIDRO POWER PLANT IN THE RIVER MANULA PUGUNG COUNTRYDISTRICT OF WEST COASTAL LAMPUNGRosnita Rauf*), Helny Lalan, and BudimanDepartment of Electrical Engineering, Faculty of Engineering & Planning, Ekasakti UniversityJl. Veterans Dalam No. 26 B, PadangAbstractThe increase in demand for adequate supply of electricity increases with the increase in population. The energy source used today is from PT. PLN Persero. To generate electricity to this day is still dominated by fossil fuels, which is a source of energy that can not be renewed and not environmentally friendly. The Mini Hydro Power Plant is a renewable and environmentally friendly energy source that has the potential to replace fossil fuels. In this research, a feasibility study of mini hydro power plant which is located in West Coast Pesisir Regency of Lampung. This feasibility study, which we need to measure is the number of reliable water debit contained in one of the rivers of Bukit Barisan Selatan National Park (TNBBS). The results showed that Manula river water discharge was Q = 20,32 m3 / s and Beda height or Head = 98 meter able to generate minimum power equal to 17,97 MW. From the results of power that can be generated, mini hydro power plant is feasible to be realized, but the need for further financial review.


2018 ◽  
Vol 17 (3) ◽  
pp. 393
Author(s):  
I Putu Juliana ◽  
Antonius Ibi Weking ◽  
Lie Jasa

The dependence of power plants on energy sources such as diesel, natural gas and coal is almost 75%, encouraging the development of renewable energy in an effort to meet the electricity supply. One of them is the micro hydro power plant by utilizing the potential of existing water. The working principle of PLTMH is to change the potential energy of water into electrical energy. In this final project has been designed modeling of micro hydro power plant by using screw turbine (Archimedes Screw). The turbine used resembles a drill bit, with a diameter of a turbine of 26 cm, a screw width of 10 cm, and an amount of 10 pieces of blade. Measurements made on the modeling of micro hydro power plants include: water discharge, turbine rotation, generator rotation, voltage, current, torque and generator output power and efficiency. The parameters are measured by changing the water fall on the turbine from the position of the turbine head angle 00, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800  and 900 . The result of measurement that has been done on the parameters of micro hydro power plant modeling, obtained the highest measurement result at the corner of turbine head 400. The output power generated is 10.92 watts, torque is 0.60 Nm and efficiency of 14%. The results obtained are still low because the turbine rotation is less able to rotate the generator, where the generator torque is greater than the torque in the turbine. This is influenced by the small water discharges in the modeling of this micro hydro power plant.


Author(s):  

Issues of the contraflows formation in the Votkinsk Reservoir (the middle one in the sequence of the Kama reservoirs) have been studied. The water discharge regime through the Kama Hydro Power Plant determines the contraflow occurrence. The importance of the contraflow issues is caused by the risk of contaminated waters input to water intakes located upstream in respect of the waste water outlets. One of the major industrial agglomeration, namely the Perm-Krasnokamsk cluster with numerous water intakes and waste water discharge points, is located in the upstream part of the Votkinsk Reservoir with is the downstream reach of the Kama Reservoir. On the basis of assessment of the contraflows scale and the consequences for water users the water/economic and environmental limitations are set for the power plant operation regime including sanitary discharge volumes. The contraflows have been simulated as a result of digital solution of the Saint-Venant equation in 1D-definintion with input of the first type boundary conditions directly in the vicinity of the Votkinsk Power Station dam. We have assessed the reservoir morphometry role in the contraflows formation. Outputs of the comparative experiments performed at different schematic models of the Votkinsk Reservoir have shown that reflection of the level lowering straight wave from the Votkinsk Power Station dam is the determining factor of the contraflows formation rather than peculiarities of the morphometry. When decreasing the period of water discharge to the downstream reach the zone of contraflows formation is displacing towards the Votkins Power Plant dam.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Dwi Irawan ◽  
Eko Nugroho ◽  
Eko Widiyanto

A micro hydro power plant, or commonly known as a turbine is a power plant that utilizes the potential energy of water to be converted into mechanical energy which is then converted into electrical energy using a generator. The Pelton turbine is an extension of the impulse turbine with a split some blades dividing the jet into two equal beaks which are reversed sideways at the turbine wheel. This study aims to determine the effect of the number of nozzles to output power, efficiency, and electric power produced. In this study, a Pelton type water turbine was applied to a water source flowing from the mountains with a head of 26 m and 0.003167 m3/s water discharge. This study used 3 variations of the number of nozzles (single, double, and triple nozzle) with 9 mm outer diameter of nozzle and 35 mm nozzle length. The results of the research conducted, the turbine power is 419.53 watts, the turbine efficiency is 52%, and the generator power is 360 Watts for triple nozzle variation. The turbine power obtained is 388.83 Watts, the turbine efficiency is 48%, and the generator power is 234 Watts for double nozzle variation. And the power obtained is 367.47 Watts, the turbine efficiency is 45%, and the generator power is 175 Watts for single nozzle variations.


Author(s):  
Aris Suryadi ◽  
Mochamad Faisal ◽  
Berayan Munthe ◽  
Mindit Eriyadi ◽  
Junaidy Burhan

Berecek Village, located in Sukatani District, Purwakarta Regency, West Java Province, has a river that has not been used optimally. This community service aims to utilize the available water energy so that it can produce Micro Hydro power plants. The manufacture of a micro-hydro power plant starts from measuring water potential, designing turbines and generators, then observing the work system and estimating the electrical power that will be generated. From the survey results, it is known that the water discharge is 0.0059 m3 / s and has a fall height of 4 m. This data is used to select the type of turbine, reservoir selection, quick pipe, and generator design. The results of the manufacture of micro power plants obtained by designing using an open flume propeller turbine with a turbine rotation speed of 2063 rpm, this PLTMH is able to produce turbine power of 1346 watts with a water discharge of 45 liters / second so that the power obtained is 1076 watts. 


2018 ◽  
Vol 154 ◽  
pp. 01043
Author(s):  
Didik Notosudjono ◽  
Evita Wismiana ◽  
Fitrah Alamsyah ◽  
Bagus Dwi Ramadhon

Built in 1923, the Ubrug Hydro Power Plant in Sukabumi was set up with an installed power of 5,94 MW on 1st unit and 2nd unit and 6,48 MW on the 3rd unit resulting in sum total of 18,36 MW. However, at present, the actual total power only generates 15,045 MW, a smaller number than its initial capacity, due to the lack of water discharge. Based on the measurement data, the load of the generator has experienced a decrease of power in normal field operation with a peak load of 9,5 MW and the lowest of 6 MW. On daily operations, only 2 generators are being operated, leaving the 3rd generator unoperated. This is due to the aging hydroelectric power plant on the location and the transition of forest functions in the upstream area, that serves as water absorption, to settlements of residents, and industrial estates. The other and the most salient cause is the waste carried by the Cicatih River coming along with the flow of water in the conduit.


2017 ◽  
Vol 15 (2) ◽  
pp. 189-206
Author(s):  
Rachman Djamal ◽  
Tri Risandewi

This study aims to determine the technical application of picohydro power plant (making design and application test) in Pandansari Village, Wanayasa District, Banjarnegara Regency. The result of technical analysis of picohydro power plant is capable of producing 7.200 watt or 7,2 kilowatts of electric power. Based on the observation and calculation of water discharge in July-August 2017, the water debit required to run the generator on picohydro power plant is insufficient (less than 30 liters / sec) due to the months already entering the dry season in Banjarnegara Regency and also because some of the water debit is used by waterwheel to increase water supply to the water container / reservoir belonging to the people of Pandansari Village. During the dry season, the picohydro power plant can be used when operated alternately with a water mill or set the time of use for each water mill used in the morning until late afternoon, while the picohydro power plant is used during the afternoon until night or early morning when people need electricity for their daily needs. The next alternative is to place a second picohydro / turbine generator under the first turbine utilizing waste water from the first turbine with a height difference of at least 2 meters or more. If during the rainy season, there is a very heavy flow of water from above then the overflow can be disbursed / dumped down through the overflow channel so that the performance of the picohydro generator is not disturbed


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Nurva Alipan

AbstractThe final project is aimed at realizing a Pico-hydro Power Plant that can be used for street lighting around the salak garden, as well as find out the performance of the pico-hydro power plant which can be used for electrical energy needs such as street lighting. Design and manufacture of pico-hydro power plant requires several supporting components such as: (a). Pelton type turbine; (b). 3 phase AC generator; (c). Accumulator 12volt 3.5Ah; (d). 3 phase full phase rectifier circuit; (e). Charger control regulator circuit; (f). Inverter circuit; And (g). Energy saving lamps. The process of the beginning includes: (a). Analyzing the needs of both equipment and materials needs, (b). Do the design process, (c). Design of Pico Hydro Power Plant (PLTPH), (d). Testing tool. Based on the performance test results, Pico-Hydro Power Station can work well. This can be seen from the indicators of high water flow discharge can rotate the turbine quickly during the rainy season the flow of water will be higher turbine will also spin faster. Water discharge is very influential on the rotation of the generator, if the water discharge is high then the charging will be faster. Conversely when the water discharge decreases the charging will be long. The average water discharge of 0.061 - 0.065 can rotate the 371 rpm generator producing an average voltage of 17.5 volts. At a voltage generated from an inverter of 220 Volts can supply a number of 5-sized lamps 15 Watt. The result of the generator test produces a voltage of 12 V AC with a current of 2 Ampere converted to an inverter DC voltage to AC to 220 V with 100 Watt power. Keywords : pico-hydro, 3 phase AC generator,  water discharge AbstrakPenelitian ini bertujuan untuk merealisasikan sebuah Pembangkit Listrik Tenaga Pico-hydro yang dapat digunakan untuk penerangan jalan seputaran kebun salak, serta mengetahui unjuk kerja dari pembangkit listrik tenaga pico-hydro yang nantinya dapat digunakan untuk kebutuhan energi listrik seperti penerangan jalan. Perancangan dan pembuatan pembangkit listrik tenaga pico-hydro membutuhkan beberapa komponen pendukung diantaranya: a). turbin berjenis pelton; b). generator AC 3 fasa; c). accumulator 12volt 3,5Ah; d). rangkaian penyearah gelombang penuh 3 fasa; e). rangkaian charger control regulator; f). rangkaian inverter; dan g). lampu hemat energi. Proses pembuatan alat, meliputi: a). menganalisis kebutuhan baik kebutuhan alat dan bahan, b). melakukan proses perancangan, c). pembuatan desain Pembangkit Listrik Tenaga Pico Hydro (PLTPH), d). pengujian alat. Berdasarkan hasil uji kinerja, Pembangkit Listrik Tenaga Pico-Hydro dapat bekerja dengan baik. Hal ini dapat dilihat dari indikator debit aliran air yang tinggi dapat memutar turbin dengan cepat. Saat musim hujan aliran air akan semakin tinggi sehingga turbin juga akan berputar lebih cepat. Debit air sangat berpengaruh terhadap putaran generator, jika debit air tinggi maka pengisian akan lebih cepat. Sebaliknya saat debit air menurun pengisian akan lama. Debit air rata-rata 0,061 - 0,065 dapat memutar generator 371 rpm menghasilkan tegangan rata-rata 17,5 volt. Pada tegangan yang dihasilkan dari inverter sebesar 220 Volt dapat mensuplai sejumlah lampu 5 berukuran 15 Watt. Hasil pengujian generator menghasilkan tegangan 12 V AC dengan arus 2 Ampere dikonversi ke inverter tegangan DC ke AC menjadi 220 V dengan daya 100 Watt. Kata kunci: pico-hydro, generator AC 3 fasa, debit air


Sign in / Sign up

Export Citation Format

Share Document