scholarly journals OPTIMIZATION TECHNIQUE OF DRIVING DISC PARAMETERS

2021 ◽  
pp. 317-325
Author(s):  
Yu.V. Konstantinov ◽  
A.P. Akimov ◽  
V.I. Medvedev ◽  
A.G. Terentyev

Flat circular discs in powered operation mode create driving forces. These forces enable to decrease the wheel slippage of the energy saturated tractor of tillage unit and to reduce the specific energy consumption. The objective of this study was to develop a technique that enables to determine the driving disc optimal parameters for maximum efficiency criterion. The earlier developed mathematical model of soil-disc interaction was used for this purpose. Soil properties in the model are characterized by means of two empirical constants. The relative depth and the kinematic parameter determine the disc operation mode. It was shown that the driving disc can operate with high efficiency, if the disc operates at the optimal values of the parameters. The driving disc efficiency can achieve the value about fifty percent. The experimental results confirmed the adequacy of the technique. The discrepancy between the predicted and field experimental values of driving forces and applied moments was about 25%. The proposed technique can be modified to optimize the parameters of other powered rotary tools of tillage machines and units.

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1850 ◽  
Author(s):  
Yann E. Bouvier ◽  
Diego Serrano ◽  
Uroš Borović ◽  
Gonzalo Moreno ◽  
Miroslav Vasić ◽  
...  

In modern aircraft designs, following the More Electrical Aircraft (MEA) philosophy, there is a growing need for new high-power converters. In this context, innovative solutions to provide high efficiency and power density are required. This paper proposes an unregulated LLC full-bridge operating at resonant frequency to obtain a constant gain at all loads. The first harmonic approximation (FHA) model is not accurate enough to estimate the voltage gain in converters with high parasitic resistance. A modified FHA model is proposed for voltage gain analysis, and time-based models are used to calculate the instantaneous current required for the ZVS transition analysis. A method using charge instead of current is proposed and used for this ZVS analysis. Using this method, an auxiliary circuit is proposed to achieve complete ZVS within the whole load range, avoiding a gapped transformer design and increasing the efficiency and power density. A 28 Vdc output voltage prototype, with 10 kW peak output power, has been developed to validate the theoretical analysis and the proposed auxiliary circuit. The maximum efficiency (96.3%) is achieved at the nominal power of 5 kW.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4849
Author(s):  
Chan Hyeon Park ◽  
Jun Yong Kim ◽  
Shi-Joon Sung ◽  
Dae-Hwan Kim ◽  
Yun Seon Do

In this paper, we propose an optimized structure of thin Cu(In,Ga)Se2 (CIGS) solar cells with a grating aluminum oxide (Al2O3) passivation layer (GAPL) providing nano-sized contact openings in order to improve power conversion efficiency using optoelectrical simulations. Al2O3 is used as a rear surface passivation material to reduce carrier recombination and improve reflectivity at a rear surface for high efficiency in thin CIGS solar cells. To realize high efficiency for thin CIGS solar cells, the optimized structure was designed by manipulating two structural factors: the contact opening width (COW) and the pitch of the GAPL. Compared with an unpassivated thin CIGS solar cell, the efficiency was improved up to 20.38% when the pitch of the GAPL was 7.5–12.5 μm. Furthermore, the efficiency was improved as the COW of the GAPL was decreased. The maximum efficiency value occurred when the COW was 100 nm because of the effective carrier recombination inhibition and high reflectivity of the Al2O3 insulator passivation with local contacts. These results indicate that the designed structure has optimized structural points for high-efficiency thin CIGS solar cells. Therefore, the photovoltaic (PV) generator and sensor designers can achieve the higher performance of photosensitive thin CIGS solar cells by considering these results.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 593-603 ◽  
Author(s):  
Zivan Spasic ◽  
Sasa Milanovic ◽  
Vanja Sustersic ◽  
Boban Nikolic

The paper presents the design and operating characteristics of a model of reversible axial fan with only one impeller, whose reversibility is achieved by changing the direction of rotation. The fan is designed for the purpose of providing alternating air circulation in wood dryers in order to reduce the consumption of electricity for the fan and increase energy efficiency of the entire dryer. To satisfy the reversibility of flow, the shape of the blade profile is symmetrical along the longitudinal and transversal axes of the profile. The fan is designed with equal specific work of all elementary stages, using the method of lift forces. The impeller blades have straight mean line profiles. The shape of the blade profile was adopted after the numerical simulations were carried out and high efficiency was achieved. Based on the calculation and conducted numerical simulations, a physical model of the fan was created and tested on a standard test rig, with air loading at the suction side of the fan. The operating characteristics are shown for different blade angles. The obtained maximum efficiency was around 0.65, which represents a rather high value for axial fans with straight profile blades.


2014 ◽  
Vol 926-930 ◽  
pp. 434-439
Author(s):  
Chang Sheng Li ◽  
Juan Cao ◽  
He Zhang

Magnetic resonance wireless power transmission technology is based on the phenomenon of resonant coupling to realize non-contact power transmission via near magnetic field. Based on the mutual coupling model of resonance system, the influence laws of system transmission parameters, such as coil coupling coefficients, load resistance, etc., on the transmission performance are theoretically studied in this paper. The research results shows that the power high-efficiency and high-quality transmission does not depend on the large coil loop coupling coefficient and the working frequencies of maximum power and maximum efficiency transmission do not coincide at most condition. Transmission systems with a high resonance frequency can produce high power and efficiency transmission over short distances. In addition, by increasing the coil diameter or wire diameter can improve the system quality factor, and optimize the energy transmission performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taoreed O. Owolabi ◽  
Kabiru O. Akande ◽  
Sunday O. Olatunji

Doping and fabrication conditions bring about disorder in MgB2superconductor and further influence its room temperature resistivity as well as its superconducting transition temperature (TC). Existence of a model that directly estimatesTCof any doped MgB2superconductor from the room temperature resistivity would have immense significance since room temperature resistivity is easily measured using conventional resistivity measuring instrument and the experimental measurement ofTCwastes valuable resources and is confined to low temperature regime. This work develops a model, superconducting transition temperature estimator (STTE), that directly estimatesTCof disordered MgB2superconductors using room temperature resistivity as input to the model. STTE was developed through training and testing support vector regression (SVR) with ten experimental values of room temperature resistivity and their correspondingTCusing the best performance parameters obtained through test-set cross validation optimization technique. The developed STTE was used to estimateTCof different disordered MgB2superconductors and the obtained results show excellent agreement with the reported experimental data. STTE can therefore be incorporated into resistivity measuring instruments for quick and direct estimation ofTCof disordered MgB2superconductors with high degree of accuracy.


1993 ◽  
Vol 183 (1) ◽  
pp. 137-147 ◽  
Author(s):  
N. A. Curtin ◽  
R. C. Woledge

Net work output and heat production of white myotomal muscle fibres from the dogfish were measured during complete cycles of sinusoidal movement at 12°C. The peak-to-peak movement was about 9 % of the muscle fibre length; three stimuli at 32 ms intervals were given in each mechanical cycle. The frequency of movement and the timing of the stimulation were varied for each preparation to find the optimal conditions for power output and those optimal for efficiency (the ratio of net work output to total energy output as heat+work). To achieve either maximum power or maximum efficiency, the tetanus must start while the muscle fibres are being stretched, before the beginning of the shortening part of the mechanical cycle. The highest power output, averaged over one cycle, was 0.23+/−0.014 W g-1 dry mass (+/−s.e.m., N=9, 46.9+/−2.8 mW g-1 wet mass) and was produced during movement at 3.5 Hz. The highest efficiency, 0.41+/−0.02 (+/−s.e.m., N=13), occurred during movements at 2.0-2.5 Hz. This value is higher than the efficiency previously measured during isovelocity shortening of these fibres. The implications of the high efficiency for crossbridge models of muscle contraction are discussed.


2021 ◽  
Vol 316 ◽  
pp. 147-152
Author(s):  
V.S. Kuzevanov ◽  
S.S. Zakozhurnikov ◽  
Galina S. Zakozhurnikova

The high-temperature synthesis of silicon carbide (SiC) in an electro-thermal fluidized bed reactor (EFB) has advantages, in comparison with the production in resistance furnaces, in terms of specific energy consumption, productivity and the level of automation of the technological process. The basic equations of the fluidized-bed carbide formation process model are presented in the paper. The results of calculating the synthesis parameters of finely dispersed SiC in the stationary operation mode of the EFB reactor are also presented. The correspondence between the calculated and available experimental results on the output of the final product is shown.


2020 ◽  
Vol 1 (4) ◽  
pp. 16-24
Author(s):  
A.I. Grishin ◽  

The paper investigates the effect on the linear peristaltic pump operation of the properties of the material of its elastic tube, the algorithm of actuation of the release elements, as well as the presence of irregularities in the inlet and outlet sections of the pump in the form of alternating confusers and sudden expansions. To study the influence of these factors, a series of numerical experiments was carried out using the universal software STAR-CCM +, where the pump operation was simulated by a joint calculation of the fluid flow and elastic deformations of its tube. As a result of numerical experiments for a number of values of Poisson's ratio, it was found that the material of the pump tube must be selected with the lowest possible Poisson's ratio in order to obtain the highest efficiency. The study of possible algorithms for the actuation of the release elements of the pump showed that in order to obtain the maximum efficiency, the pump operation mode should be select-ed in accordance with the drive design. The drive, where energy is expended only on the movement of the release elements, requires the mode with the first release elements to hold the tube in a com-pressed state longer, which provides a higher feed value. For the drive, where energy is spent on maintaining the tube in a compressed state, the preferred mode is the one with the delay in the re-turn of the release element to its original state is minimal. As a result of studying the influence of sections with irregularities, it was found that the use of the height and pitch of irregularities, when the ratio of the resistances of these sections in the forward and reverse flow is optimal, leads to a decrease in the flow and pressure of pump.


Sign in / Sign up

Export Citation Format

Share Document