scholarly journals Study of the Electrical Properties of Porous Silicon Prepared by Electrochemical Etching Technique

2019 ◽  
Vol 54 (5) ◽  
Author(s):  
Warood Kream Alaarage ◽  
Luma Hafedh Abed Oneiza ◽  
Mohanad Ghulam Murad Alzubaidi

In our work, a P-type porous silicon (PSi) with orientation (100) have been prepared using the chemical etching method; the goal is to study the electrical properties of PSi samples prepared with completely different etching current (7, 9, 11 and 13) mA and glued for (15 min) anodization time. Depending on the atomic force microscopy (AFM) investigation, we notice the roughness of Si surface increases with increasing etching current because of increases within the dimension (diameter) of surface pits. The electrical and optoelectronic properties of prepared PSi, specifically capacitance-voltage (C-V), current-voltage (I-V), responsivity and detectivity, are analyzed. It had been found that electrical characteristics of porous Si samples measured in dark (Id) and below illumination (IPh) will be fitted well by the equations of thermal emission. From this point of view, Schottky barrier height (ɸB) and ideality factor (n) of made-up photodetectors were calculated. We tended to determine from I-V characteristics of a dark, and illuminations that the pass current through the PSi layer reduced by increasing the etching current, as a result of increasing the electrical resistance of PSi layer and therefore the optimum value of ideality factor is (2.7), whereas from C-V characteristic we determined that in-built potential accumulated with increasing etching current. The results show that there are clear results for better performance of photodetectors.

2012 ◽  
Vol 576 ◽  
pp. 519-522 ◽  
Author(s):  
Fadzilah Suhaimi Husairi ◽  
Maslihan Ain Zubaidah ◽  
Shamsul Faez M. Yusop ◽  
Rusop Mahmood Mohamad ◽  
Saifolah Abdullah

This article reports on the electrical properties of porous silicon nanostructures (PSiNs) in term of its surface topography. In this study, the PsiNs samples were prepared by using different current density during the electrochemical etching of p-type silicon wafer. PSiNs has been investigated its electrical properties and resistances for different surface topography of PSiNs via current-voltage (I-V) measurement system (Keithley 2400) while its physical structural properties was investigated by using atomic force microscopy (AFM-XE100).


2019 ◽  
Vol 11 (21) ◽  
pp. 102-107
Author(s):  
Uday Muhsin Nayef

In this paper, CdO nanoparticles prepared by pulsed laser deposition techniqueonto a porous silicon (PS) surface prepared by electrochemical etching of p-type silicon wafer with resistivity (1.5-4Ω.cm) in hydrofluoric (HF) acid of 20% concentration. Current density (15 mA/cm2) and etching times (20min). The films were characterized by the measurement of AFM, FTIR spectroscopy and electrical properties.   Atomic Force microscopy confirms the nanometric size.Chemical components during the electrochemical etching show on surface of PSchanges take place in the spectrum of CdO deposited PS when compared to as-anodized PS. The electrical properties of prepared PS; namely current density-voltage characteristics under dark, show that the pass current through the PS layer is more than that obtained from the CdO/PS/Si which is related to increasing junction resistivity that come from increasing in depletion width.


2021 ◽  
Vol 19 (50) ◽  
pp. 77-83
Author(s):  
Ghasaq Ali Tomaa ◽  
Alaa Jabbar Ghazai

Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and porous silicon grain size decreased and FESEM showed a homogeneous pattern and verified the formation of uniform porous silicon.


2015 ◽  
Vol 821-823 ◽  
pp. 929-932 ◽  
Author(s):  
Filippo Giannazzo ◽  
Stefan Hertel ◽  
Andreas Albert ◽  
Gabriele Fisichella ◽  
Antonino La Magna ◽  
...  

The electrical properties of the interface between quasi free standing bilayer graphene (QFBLG) and SiC(0001) have been investigated by nanoscale resolution current measurements using conductive atomic force microscopy (CAFM). I-V analyses were carried out on Au-capped QFBLG contacts with different sizes (from 200 down to 0.5 μm) fabricated on SiC samples with different miscut angles (from on-axis to 3.5° off-axis). The extracted QFBLG/SiC Schottky barrier height (SBH) was found to depend on the contact size. SBH values ∼0.9-1 eV were obtained for large contacts, whereas a gradual increase was observed below a critical (micrometer scale) contact size (depending on the SiC miscut angle) up to values approaching ∼1.5 eV. Nanoscale resolution current mapping on bare QFLBG contacts revealed that SiC step edges and facets represent preferential current paths causing the effective SBH lowering for larger contacts. The reduced barrier height in these regions can be explained in terms of a reduced doping of QFBLG from SiC substrate at (11-20) step edges with respect to the p-type doping on the (0001) terraces.


ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Igor Iatsunskyi ◽  
Valentin Smyntyna ◽  
Nykolai Pavlenko ◽  
Olga Sviridova

Photoluminescent (PL) porous layers were formed on p-type silicon by a metal-assisted chemical etching method using H2O2 as an oxidizing agent. Silver particles were deposited on the (100) Si surface prior to immersion in a solution of HF and H2O2. The morphology of the porous silicon (PS) layer formed by this method was investigated by atomic force microscopy (AFM). Depending on the metal-assisted chemical etching conditions, the macro- or microporous structures could be formed. Luminescence from metal-assisted chemically etched layers was measured. It was found that the PL intensity increases with increasing etching time. This behaviour is attributed to increase of the density of the silicon nanostructure. It was found the shift of PL peak to a green region with increasing of deposition time can be attributed to the change in porous morphology. Finally, the PL spectra of samples formed by high concentrated solution of AgNO3 showed two narrow peaks of emission at 520 and 550 nm. These peaks can be attributed to formation of AgF and AgF2 on a silicon surface.


2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850012 ◽  
Author(s):  
IBRAHIM R. AGOOL ◽  
AHMED N. ABD ◽  
MOHAMMED O. DAWOOD ◽  
HARITH M. ABD AL-AMEER ◽  
NADIR F. HABUBI ◽  
...  

The present work is concerned with the preparation of thin films of nanocrystalline porous silicon (PSi) by the method of electrochemical etching. CdTe nanoparticles (NPs) have been prepared by utilizing the pulsed laser ablation in liquid. The measurements of tunneling microscopy, X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR) and atomic force microscopy (AFE) were carried out and revealed that the PSi was nanostructured and the produced CdTe NPs were ball shaped, having good disposability. The diffusion of CdTe NPs on the properties of PSi solar cell assures that there was an improvement upon their properties. The relationship between [Formula: see text] and the reverse bias voltage was observed to be linear. Values of the built-in potential were observed to be dependent on the laser fluence, current density and the etching time.


1995 ◽  
Vol 405 ◽  
Author(s):  
M. A. George ◽  
D. J. Larkin ◽  
J. Petit ◽  
A. Burger ◽  
S. H. Morgan ◽  
...  

AbstractAluminum contacts on chemical vapor deposited (CVD) SiC films were studied to examine variations in the chemical, morphological and electrical properties of the samples. Nitrogen and aluminum doped substrates were prepared to give n-type and p-type SiC epilayers respectively. These preparations were examined by surface sensitive spectroscopies and by atomic force microscopy (AFM). Samples were studied both before and after the deposition of aluminum films to compare differences between SiC(p++)/metal and SiC(n++)/metal contact interfacial properties. Aluminum has generally been found to have good adherence to the n+ epilayer but do not form good ohmic contacts, while metal films deposited on p+ epilayers have had poor adherence but have been found to provide better ohmic character. AFM images revealed nanometer sized clusters, attributed to excess Si on the n+ epilayers, while no clusters were observed on the p+ epilayers. XPS studies of the as-prepared samples indicated that the n+ epilayers had higher concentrations of oxides which may enhance adhesion. The chemical composition and morphology is discussed and correlated to the electrical properties obtained for the various samples.


1992 ◽  
Vol 283 ◽  
Author(s):  
Jeffery L. Coffer ◽  
Sean C. Lilley ◽  
Rebecca A. Martin ◽  
Leigh Ann Files-Sesler

ABSTRACTWe report here studies on the effects of Lewis base addition on the observed luminescence of porous silicon generated non-anodically from a stain etch of <100> p-type wafers and whose surface morphology has been characterized by atomic force microscopy (AFM). Addition of dilute heptane solutions of alkyl amines such as n-butyl amine (C4H7NH2) results in dramatic quenching of the steady-state photoluminescence (PL) near 625 nm. The observed fractional changes in integrated PL intensity as a function of amine concentration have been fit to a simple equilibrium model demonstrating Langmuir-type behavior from which adduct formation constants have been calculated. These steady-state PL measurements are complemented by Fourier Transform Infrared (FT IR) spectroscopic measurements monitoring the effect of amine adsorption on the silicon hydride stretching modes [v(Si-Hx)] near 2100 cm-1. Based on these results, a physical model for the amine interactions with the porous silicon surface is presented.


2002 ◽  
Vol 09 (01) ◽  
pp. 261-265
Author(s):  
H. J. SHIN ◽  
M. K LEE ◽  
C. C. HWANG ◽  
K. J. KIM ◽  
T.-H. KANG ◽  
...  

The changes of the structure and chemical states of photoluminescent p-type porous silicon (PS) caused by annealing in vacuum were investigated with atomic force microscopy and X-ray photoemission spectroscopy. The relative intensities of the silicon dioxide and suboxide peaks increased with the annealing temperature. The average size of the fine crystallites of the as-prepared samples was 5–10 nm and became 50–100 nm after being annealed at 550°C. The cause of photoluminescence quenching upon annealing is discussed.


Sign in / Sign up

Export Citation Format

Share Document