scholarly journals Comparative Studies between Porous Silicon and Porous P-Type Gallium Nitride Prepared Using Alternating Current Photo-Assisted Electrochemical Etching Technique

2020 ◽  
Vol 1535 ◽  
pp. 012044
Author(s):  
S. N. Sohimee ◽  
Z. Hassan ◽  
Naser M. Ahmed ◽  
R. Radzali ◽  
H. J. Quah ◽  
...  
2019 ◽  
Vol 54 (5) ◽  
Author(s):  
Warood Kream Alaarage ◽  
Luma Hafedh Abed Oneiza ◽  
Mohanad Ghulam Murad Alzubaidi

In our work, a P-type porous silicon (PSi) with orientation (100) have been prepared using the chemical etching method; the goal is to study the electrical properties of PSi samples prepared with completely different etching current (7, 9, 11 and 13) mA and glued for (15 min) anodization time. Depending on the atomic force microscopy (AFM) investigation, we notice the roughness of Si surface increases with increasing etching current because of increases within the dimension (diameter) of surface pits. The electrical and optoelectronic properties of prepared PSi, specifically capacitance-voltage (C-V), current-voltage (I-V), responsivity and detectivity, are analyzed. It had been found that electrical characteristics of porous Si samples measured in dark (Id) and below illumination (IPh) will be fitted well by the equations of thermal emission. From this point of view, Schottky barrier height (ɸB) and ideality factor (n) of made-up photodetectors were calculated. We tended to determine from I-V characteristics of a dark, and illuminations that the pass current through the PSi layer reduced by increasing the etching current, as a result of increasing the electrical resistance of PSi layer and therefore the optimum value of ideality factor is (2.7), whereas from C-V characteristic we determined that in-built potential accumulated with increasing etching current. The results show that there are clear results for better performance of photodetectors.


2012 ◽  
Vol 584 ◽  
pp. 290-294 ◽  
Author(s):  
Jeyaprakash Pandiarajan ◽  
Natarajan Jeyakumaran ◽  
Natarajan Prithivikumaran

The promotion of silicon (Si) from being the key material for microelectronics to an interesting material for optoelectronic application is a consequence of the possibility to reduce its device dimensionally by a cheap and easy technique. In fact, electrochemical etching of Si under controlled conditions leads to the formation of nanocrystalline porous silicon (PS) where quantum confinement of photo excited carriers and surface species yield to a band gap opening and an increased radiative transition rate resulting in efficient light emission. In the present study, the nanostructured PS samples were prepared using anodic etching of p-type silicon. The effect of current density on structural and optical properties of PS, has been investigated. XRD studies confirm the presence of silicon nanocrystallites in the PS structure. By increasing the current density, the average estimated values of grain size are found to be decreased. SEM images indicate that the pores are surrounded by a thick columnar network of silicon walls. The observed PL spectra at room temperature for all the current densities confirm the formation of PS structures with nanocrystalline features. PL studies reveal that there is a prominent visible emission peak at 606 nm. The obtained variation of intensity in PL emission may be used for intensity varied light emitting diode applications. These studies confirm that the PS is a versatile material with potential for optoelectronics application.


Author(s):  
Shereen M. Faraj ◽  
Shaimaa M. Abd Al-Baqi ◽  
Nasreen R. Jber ◽  
Johnny Fisher

Porous silicon (PS) has become the focus of attention in upgrading silicon for optoelectronics. In this work, various structures were produced depending on the formation parameters by photo-electrochemical etching (PECE) process of n- and p-type silicon wafer at different time durations (5–90 mins) and different current densities (5, 15, and 20 mA/cm2) for each set of time durations. Diode lasers of 405 nm, 473 nm, and 532 nm wavelengths, each 50 mW power, were used to illuminate the surface of the samples during the etching process. The results showed that controlled porous layers were achieved by using blue laser, giving uniform structure which can make it possible to dispense with expensive methods of patterning the silicon.


1996 ◽  
Vol 452 ◽  
Author(s):  
J. Von Behren ◽  
P. M. Fauchet ◽  
E. H. Chimowitz ◽  
C. T. Lira

AbstractHighly luminescent free-standing porous silicon thin films of excellent optical quality have been manufactured by using electrochemical etching and lift-off steps combined with supercritical drying. One to 50 μm thick free-standing layers made from highly (p+) and moderately (p) Boron doped single crystal silicon (c-Si) substrates have been produced with porosities (P) up to 95 %. The Fabry-Pérot fringes observed in the transmission and photoluminescence (PL) spectra are used to determine the refractive index. At the highest P the index of refraction is below 1.2 from the IR to 2 eV. The absorption coefficients follow a nearly exponential behavior in the energy range from 1.2 eV and 4 eV. The porosity corrected absorption spectra of free-standing films made from p type c-Si substrates are blue shifted with respect to those prepared from p+ substrates. For P > 70 % a blue shift is also observed in PL. At equal porosities the luminescence intensities of porous silicon films made from p+ and p type c-Si are different by one order of magnitude.


2012 ◽  
Vol 576 ◽  
pp. 519-522 ◽  
Author(s):  
Fadzilah Suhaimi Husairi ◽  
Maslihan Ain Zubaidah ◽  
Shamsul Faez M. Yusop ◽  
Rusop Mahmood Mohamad ◽  
Saifolah Abdullah

This article reports on the electrical properties of porous silicon nanostructures (PSiNs) in term of its surface topography. In this study, the PsiNs samples were prepared by using different current density during the electrochemical etching of p-type silicon wafer. PSiNs has been investigated its electrical properties and resistances for different surface topography of PSiNs via current-voltage (I-V) measurement system (Keithley 2400) while its physical structural properties was investigated by using atomic force microscopy (AFM-XE100).


2020 ◽  
Vol 398 ◽  
pp. 29-33 ◽  
Author(s):  
Mariam M. Hassan ◽  
Makram A. Fakhri ◽  
Salah Aldeen Adnan

Porous silicon (n-PS) with diverse morphologies was prepared on silicon (Si) substrate via photo-electrochemical etching technique. We studies the structure, surface morphology, pore diameter, roughness, based on (XRD), (AFM), (SEM) at different etching time (5, 10 min) and current (10mA/cm2).


1992 ◽  
Vol 283 ◽  
Author(s):  
A. Kux ◽  
F. Muller ◽  
F. Koch

ABSTRACTWe prepare “nonluminescing” porous Si by electrochemical etching (50 mA/cm2 in 50% HF diluted 1:1 with ethanol) of 1 Ω(100) p-type wafers in the absence of light in order to study the subsequent luminescence activation by postprocessing. The treatments are: photochemical etching, ageing under ambient conditions, thermal oxidation. The study reveals remarkable inhomogeneities in the depth distribution of the luminescence and allows us to comment on the relative importance of particle size, spin density and chemical composition for the luminescence.


Sign in / Sign up

Export Citation Format

Share Document