scholarly journals Distribution of Extended-spectrum β-lactamase and Metallo-β-lactamase-producing Pseudomonas aeruginosa in Tertiary Care Hospitals of Lahore, Pakistan

2019 ◽  
Vol 8 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Syeda Aneela ◽  
Noor- Ul-Ain ◽  
Samyyia Abrar ◽  
Muhammad Saeed ◽  
Shahida Hussain ◽  
...  

Background: Pseudomonas aeruginosa (P. aeruginosa) is an important bacterial pathogen most frequently associated with nosocomial infections, especially in immuno-compromised patients. Early detection of these life threatening, β-lactamase producing bacteria is essential for infection control and to prevent their dissemination. The aim of our study was to detect the presence of Extended-Spectrum β-Lactamase (ESBL) and Metallo-β-Lactamase (MBL) strains of Pseudomonas aeruginosa.Material and Methods: Eighty-eight identified strains of P. aeruginosa were collected from Chughtai Laboratories, Combined Military Hospital and Children Hospital, Lahore. These strains were sub-cultured and after confirming the cultural characteristics by Gram staining and colony morphology, manual biochemical identification was done. Susceptibility to various antibiotics and production of extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were determined using modified Kirby Bauer disk diffusion method, double disk synergy test, combined disk synergy test (CDST) and inhibitor-potentiated disk diffusion test (IPD) respectively.Results: Out of eighty-eight strains tested, three were ESBL producers (3.4%) and eleven strains (12.5%) were found to be resistant to carbapenems. Of these, eight were MBL producers (72.7%). All these β-lactamase producing strains (14 strains) were multidrug-resistant (MDR). Piperacillin and piperacillin/tazobactam proved to be the most effective antibiotics in both types of β-lactamase producing strains.Conclusion: Our study shows noticeable emergence of β-lactamases (ESBLs & MBLs) in P. aeruginosa. All of these strains were MDR. It reveals a correlation of these β-lactamases with multidrug resistant genes.

2021 ◽  
Vol 14 (3) ◽  
Author(s):  
Somayeh Safarirad ◽  
Mohsen Arzanlou ◽  
Jafar Mohammadshahi ◽  
Hamid Vaez ◽  
Amirhossin Sahebkar ◽  
...  

Background: Carbapenems are the most commonly administered drugs for the treatment of multidrug-resistant Pseudomonas aeruginosa (MDR-P. aeruginosa) infections. However, carbapenem-resistant P. aeruginosa is spreading rapidly and has led to a new threat to human health worldwide. Objectives: The current study aimed to determine the prevalence of imipenem-resistant P. aeruginosa, detect metallo-β-lactamase (MBL)-producer isolates, and evaluate their clonal relationships in strains isolated from patients referring to the hospitals of Ardabil city, Iran. Methods: The resistance rate to imipenem was evaluated using the disk diffusion method. Double-disk synergy test and PCR technique were used for phenotypic and genotypic screening of MBL-positive P. aeruginosa, respectively. Ultimately, ERIC-PCR and MLST methods were used for assessing clonal relatedness among the isolates. Results: The prevalence of imipenem-resistant P. aeruginosa strains was estimated at 57.1% (48 out of 84 isolates). In addition, 45 (93.7%) out of 48 imipenem-resistant P. aeruginosa isolates were phenotypically screened as MBL-positive, among which 16 (35.5%) and three (6.6%) isolates harbored blaIMP and blaVIM-1 genes, respectively. However, blaNDM, blaSIM-2, blaSPM, and blaGIM-1 genes were not detected in this study. MBL-producing P. aeruginosa strains were divided into 42 ERIC-PCR types. Based on the results of MLST, P. aeruginosa ST235 was the only identified sequence type. Conclusions: Our results revealed a high and alarming prevalence of imipenem-resistant and blaIMP-positive P. aeruginosa ST235 at Ardabil hospitals. Continuous monitoring is essential to control the further spread of this highly virulent and drug-resistant clone.


Author(s):  
Ashna Bhasin Poonam Loomba ◽  
Abha Sharma Bibhabati Mishra ◽  
Ashish Bajaj

Pseudomonas aeruginosa (P. aeruginosa) is one of the leading causes of hospital as well as community acquired infections. They’re strenuous to treat as most of isolates exhibit various degrees of beta- lactamase mediated resistance to majority of the beta-lactam antibiotics. Single isolate can express multiple β- lactamase enzymes, further limiting the treatment options. Therefore, this study was outlined to research the coexistence of various beta-lactamase enzymes in clinical isolates of P. aeruginosa. The aim of the study was to detect the co-prevalence of Extended Spectrum Beta lactmases (ESBL), AmpC and Metallo β-Lactamases (MBL) in Pseudomonas aeruginosa isolates from a superspeciality center. Fifty clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta- lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Discernment of AmpC beta-lactamase was performed by disk antagonism while ESBL detection was done by the combined disk diffusion method as per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Eleven of 50 (22%) isolates were confirmed to be positive for AmpC and Extended spectrum beta lactamases. Co-production of AmpC along side ESBL and MBL was reported in 12 % isolates. The study shows the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Consequently, formulation of a correct antibiotic policy and taking measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to mitigate the emergence of this multiple beta-lactamase producing pathogens.


2021 ◽  
Vol 23 (4) ◽  
pp. 290-296
Author(s):  
Rojina Darnal ◽  
Mehraj Ansari ◽  
Ganesh Rai ◽  
Kul Raj Rai ◽  
Shiba Kumar Rai

Carbapenemases are the enzymes that catalyze β–lactam groups of antibiotics. The carbapenemase producers are resistant to β–lactam antibiotics and are usually multidrug-resistant bacteria challenging widely used therapeutics and treatment options. Therefore, the detection of carbapenemase activity among clinical isolates is of great therapeutic importance. We aimed to study the MDR and carbapenemase-producing Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from various clinical samples at a tertiary care hospital in Nepal. A total of 3,579 clinical samples were collected from the patients visiting the Department of Microbiology, B&B Hospital, Gwarko, Lalitpur. The samples were processed to isolate K. pneumoniae and P. aeruginosa and then subjected to antibiotic susceptibility testing (AST) by the Kirby-Bauer disk diffusion method. Phenotypic detection of carbapenemase activity was performed in the imipenem-resistant isolates by the modified Hodge test (MHT). Of the total samples, 1,067 (29.8%) samples showed significant growth positivity, out of which 190 (17.3%) isolates were K. pneumoniae and 121 (11.3%) were P. aeruginosa. Multidrug resistance was seen in 70.5% of the K. pneumoniae isolates and 65.3% of the P. aeruginosa isolates. Carbapenemase production was confirmed in 11.9%, and 12.2% of the imipenem-resistant K. pneumoniae and P. aeruginosa isolates, respectively, by the MHT. This study determined the higher prevalence of MDR among K. pneumoniae and P. aeruginosa; however, carbapenemase production was relatively low.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


2006 ◽  
Vol 50 (9) ◽  
pp. 2990-2995 ◽  
Author(s):  
Xiaofei Jiang ◽  
Zhe Zhang ◽  
Min Li ◽  
Danqiu Zhou ◽  
Feiyi Ruan ◽  
...  

ABSTRACT With the occurrence of extended-spectrum β-lactamases (ESBLs) in Pseudomonas aeruginosa being increasingly reported worldwide, there is a need for a reliable test to detect ESBLs in clinical isolates of P. aeruginosa. In our study, a total of 75 clinical isolates of P. aeruginosa were studied. Nitrocefin tests were performed to detect the β-lactamase enzyme; isoelectric focusing electrophoresis, PCR, and PCR product sequencing were designed to further characterize the contained ESBLs. Various ESBL-screening methods were designed to compare the reliabilities of detecting ESBLs in clinical isolates of P. aeruginosa whose β-lactamases were well characterized. Thirty-four of 36 multidrug-resistant P. aeruginosa clinical isolates were positive for ESBLs. bla VEB-3 was the most prevalent ESBL gene in P. aeruginosa in our study. Among the total of 34 isolates that were considered ESBL producers, 20 strains were positive using conventional combined disk tests and 10 strains were positive using a conventional double-disk synergy test (DDST) with amoxicillin-clavulanate, expanded-spectrum cephalosporins, aztreonam, and cefepime. Modifications of the combined disk test and DDST, which consisted of shorter distances between disks (20 mm instead of 30 mm) and the use of three different plates that contained cloxacillin (200 μg/ml) alone, Phe-Arg β-naphthylamide dihydrochloride (MC-207,110; 20 μg/ml) alone, and both cloxacillin (200 μg/ml) and MC-207,110 (20 μg/ml) increased the sensitivity of the tests to 78.8%, 91.18%, 85.29%, and 97.06%.


2010 ◽  
Vol 4 (04) ◽  
pp. 239-242 ◽  
Author(s):  
Supriya Upadhyay ◽  
Malay Ranjan Sen ◽  
Amitabha Bhattacharjee

Introduction: Infections caused by Pseudomonas aeruginosa are difficult to treat as the majority of isolates exhibit varying degrees of beta-lactamase mediated resistance to most of the beta-lactam antibiotics. It is also not unusual to find a single isolate that expresses multiple β-lactamase enzymes, further complicating the treatment options. Thus the present study was designed to investigate the coexistence of different beta-lactamase enzymes in clinical isolates of P. aeruginosa. Methodology: A total of 202 clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Detection of AmpC beta-lactamase was performed by disk antagonism test and a modified three-dimensional method, whereas detection of ESBL was done by the combined disk diffusion method per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Results: A total of 120 (59.4%) isolates were confirmed to be positive for AmpC beta-lactamase. Among them, 14 strains (7%) were inducible AmpC producers. Co-production of AmpC along with extended spectrum beta-lactamase and metallo beta-lactamase was reported in 3.3% and 46.6% isolates respectively. Conclusion: The study emphasizes the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Thus proper antibiotic policy and measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to minimize the emergence of this multiple beta-lactamase producing pathogens.


2019 ◽  
Vol 11 (03) ◽  
pp. 206-211
Author(s):  
Jaison Jayakaran ◽  
Nirupa Soundararajan ◽  
Priyadarshini Shanmugam

Abstract INTRODUCTION: Urinary tract infections (UTIs) remain as the most common infection. Catheter-associated (CA) UTI can lead to bacteremia and thereby is the leading cause of morbidity and mortality in hospitalized patients in our country. AIMS AND OBJECTIVES: This study aims to check the prevalence of CAUTI and study the phenotypic and genotypic characters of the multidrug-resistant organisms in a tertiary care hospital, with special reference to NDM-1 and OXA-23. MATERIALS AND METHODS: A total of 231 urine samples from patients with CA-UTI in different wards in a tertiary care hospital over a period of 3 months between June and August 2018 were collected and processed following the standard protocol. Antibiotic susceptibility tests were performed by disk-diffusion method. Modified Hodge test (MHT) was done to isolate carbapenem-resistant isolates, and polymerase chain reaction was done to detect NDM-1 and OXA-23. RESULTS: Out of 231 samples, 101 samples yielded significant growth. These 38 samples were Gram-negative bacilli which were resistant to carbapenems. Out of the 38 which showed carbapenem resistance, 23 were MHT positive. Out of the 23 MHT-positive isolates, 8 (21.05%) were positive for NDM-1 gene and only 1 (2.6%) was positive for the OXA-23 gene. CONCLUSION: This study has shown that carbapenem-resistant isolates from all the CA urinary tract-infected patients were 52.77% and most of them were Klebsiella. About 21% of them harbored the NDM-1 gene whereas only 2% had the OXA-23 gene. There has been an alarming increase in the spread of carbapenem resistance.


2020 ◽  
Vol 39 (12) ◽  
pp. 2387-2396
Author(s):  
Carlo Genovese ◽  
Floriana D’Angeli ◽  
Valentina Di Salvatore ◽  
Gianna Tempera ◽  
Daria Nicolosi

AbstractStreptococcus agalactiae (also known Group B Streptococcus or GBS) represents the main pathogen responsible for early- and late-onset infections in newborns. The present study aimed to determine the antimicrobial susceptibility pattern and the capsular serotypes of GBS isolated in Eastern Sicily over 5 years, from January 2015 to December 2019. A total of 3494 GBS were isolated from vaginal swabs of pregnant women (37–39 weeks), as recommended by the Centers for Disease Control and Prevention. Capsular polysaccharide’s typing of GBS was determined by a commercial latex agglutination test containing reagents to serotypes I–IX. The antimicrobial resistance pattern of GBS was determined through the disk diffusion method (Kirby-Bauer) and the double-disk diffusion test on Mueller-Hinton agar plates supplemented with 5% defibrinated sheep blood, according to the guidelines of the Clinical and Laboratory Standards Institute. Serotypes III (1218, 34.9%) and V (1069, 30.6%) were the prevalent colonizers, followed by not typable (570, 16.3%) and serotypes Ia (548, 15.7%), Ib (47, 1.3%), II (40, 1.1%), and IV (2, 0.1%). All 3494 clinical isolates were susceptible to cefditoren and vancomycin. Resistance to penicillin, ampicillin, levofloxacin, clindamycin, and erythromycin was observed in 6 (0.2%), 5 (0.1%), 161 (4.6%), 1090 (31.2%), and 1402 (40.1%) of the strains, respectively. Most of erythromycin-resistant GBS (1090/1402) showed the cMLSB phenotype, 276 the M phenotype, and 36 the iMLSB phenotype. Our findings revealed a higher prevalence of serotype III and a relevant resistance rate, among GBS strains, to the most frequently used antibiotics in antenatal screening.


2019 ◽  
Vol 21 (2) ◽  
pp. 110-116
Author(s):  
Rajani Shrestha ◽  
N. Nayak ◽  
D.R. Bhatta ◽  
D. Hamal ◽  
S.H. Subramanya ◽  
...  

Clinical isolates of Pseudomonas aeruginosa often exhibit multidrug resistance due to their inherent ability to form biofilms. Drug resistance in Ps. aeruginosa is a major clinical problem, especially in the management of patients with nosocomial infections and those admitted to ICUs with indwelling medical devices. To evaluate the biofilm forming abilities of the clinical isolates of Ps. aeruginosa and to correlate biofilm formation with antibiotic resistance. A total of 90 consecutive isolates of Ps. aeruginosa obtained from various specimens collected from patients visiting the Manipal Teaching Hospital, Pokhara, Nepal between January 2018 - October 2018 were studied. Isolates were identified by standard microbiological methods. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method. All the isolates were tested for their biofilm forming abilities by employing the tissue culture plate assay. Of the 90 Ps. aeruginosa isolates, maximum i.e 42 (46.6%) were from patients in the age group of > 50 years. Majority (30; 33.3%) of the isolates were obtained from sputum samples. However, percentage isolation from other specimens like urine, endotracheal tube (ETT), pus, eye specimens and blood were 18.9%, 16.7%, 16.7%, 7.8% and 6.7% respectively. All the isolates were sensitive to polymixin B and colistin, 91.1% of the organisms were sensitive to imipenem, and more than 80% to aminoglycosides (80% to gentamicin, 83.3% to amikacin). A total of 29 (32.2%) organisms were biofilm producers. Maximum numbers of biofilm producing strains were obtained from ETT (8 of 15; 53.3%), pus (8 of 15; 53.3%) and blood (2 of 6; 33.3%) i.e from all invasive sites. None of the isolates from noninvasive specimens such as conjunctival swabs were biofilm positive. Significantly higher numbers of biofilm producers (23 of 29; 79.3%) were found to be multidrug resistant as compared to non-biofilm (6 of 61; 9.8%) producers (p=0.000). Ps. aeruginosa colonization leading to biofilm formation in deep seated tissues and on indwelling devices is a therapeutic challenge as majority of the isolates would be recalcitrant to commonly used antipseudomonal drugs. Effective monitoring of drug resistance patterns in all Pseudomonas clinical isolates should be a prerequisite for successful patient management.


Sign in / Sign up

Export Citation Format

Share Document