scholarly journals Modified Ion Implantation Based New Subthreshold Device Design & Threshold Voltage Modelling for Ultra Low Power Applications

Author(s):  
Hossain Munem ◽  
Chowdhury Masud H
2007 ◽  
Vol E90-C (10) ◽  
pp. 2044-2050 ◽  
Author(s):  
L. H.C. FERREIRA ◽  
T. C. PIMENTA ◽  
R. L. MORENO

2015 ◽  
Vol 12 (3) ◽  
pp. 20141122-20141122 ◽  
Author(s):  
Xin-Xiang Lian ◽  
I-Chyn Wey ◽  
Chien-Chang Peng ◽  
Zhi-Qun Cheng

2021 ◽  
Author(s):  
Prashant Kumar ◽  
Munish Vashishath ◽  
Neeraj Gupta ◽  
Rashmi Gupta

Abstract This paper describes the impression of low-k/high-k dielectric on the performance of Double Gate Junction less (DG-JL) MOSFET. An analytical model of the threshold voltage of DG-JLFET has been presented. Poisson’s equation is solved using the parabolic approximation to find out the threshold voltage. The effect of high-k on various performance parameters of N-type DG-JLFET is explored. The comparative analysis has been carried out between conventional gate oxide, multi oxide and high-k oxide in terms of Drain Induced Barrier Lowering (DIBL), threshold voltage, figure of merit (ION/IOFF) and sub-threshold slope (SS). The high-k oxide has shown superlative performance as compared to others. The results are further analyzed for various device structures. The DG-JLFET with HfO2 exhibits excellent attainment by mitigating the Short Channel Effects (SCEs). The significant reduction in off current makes the device suitable for ultra-low power applications. There is a 61.9 % and 34.29% improvement in the figure of merit and sub-threshold slope in the proposed device as compared to other devices. The simulation of DG-JLFET is carried out using the Silvaco TCAD tool.


2019 ◽  
Vol 8 (2) ◽  
pp. 2434-2438

In ultra-Low power application the supply volt- age in the circuit is as minimum as possible to correct perform the operation. Reducing the supply voltage below the threshold Voltage of transistor is known as sub threshold voltage that affects the delay as well as stability parameter of the Circuit. In this paper body biased technique is applied at standard 6T SRAM which improve the static Current Noise Margin(SINM) and Write trip Current by the factor of 4.15 times and 4.7 times respectively from the Conventional (conv) 6T SRAM. SINM defined the read stability whereas WTI are write ability Parameters of the circuit. In the Sub threshold region delay parameter of the circuit increased, but in this paper delay and power of the proposed circuit are going to be degrades 2.34 times and 4.39 times from the conv. 6T SRAM at different Process Corner i.e. the Performance of the device get increased. In this paper conventional (Conv.)6T and Proposed(PP) 6T both have same W/L ratio at supply voltage of 400mv


Sign in / Sign up

Export Citation Format

Share Document