scholarly journals Isolation, Characterization of Fiber and Its Reinforcement in Film Formation

The aim of this project is to segregate the fiber from agricultural waste in three distinct stages such as alkali treatment, bleaching process, acid hydrolysis. Agricultural wastes such as cassava bagasse, sorghum stalk, corn stalk were selected. Initially the raw materials were subjected to chemical processes like alkali treatment and bleaching process to remove lignin and hemi cellulose. The chemically purified cellulose was then subjected to acid hydrolysis for isolation of fiber. Characterization of FTIR result shows that hemicellulose and lignin was partially eliminated. TGA was carried to know the thermal properties of the sample. The film was formed by casting method using isolated fiber, maize starch, agar, Tween 80. The fibers were incorporated into the film and their properties such as tensile strength, moisture content and solubility were studied

Author(s):  
V. S. Boltovsky

Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids. 


Fibers ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 44
Author(s):  
Sonny Widiarto ◽  
Edi Pramono ◽  
Suharso ◽  
Achmad Rochliadi ◽  
I Made Arcana

In this study, cellulose and cellulose nanofibers (CNF) were extracted and prepared from cassava peels (CPs). The method of the cellulose extraction was performed by alkali treatment followed by a bleaching process. The CNF were prepared by mechanical disruption procedure (homogenization and ultrasonication), and the results were compared with a common acid hydrolysis procedure. The resulting cellulose and CNF from both procedures were then analyzed using FTIR, SEM, TEM, XRD, and TGA. The results show that cellulose and CNF were successfully prepared from both procedures. The physical properties of the produced CNF were different; however, they had similar chemical properties.


BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. 6373-6385 ◽  
Author(s):  
Yern Chee Ching ◽  
Tuck Sean Ng

The effects of chlorite bleaching on the properties of cellulose derived from oil palm empty fruit bunch (OPEFB) fiber were investigated in this work. Cellulose was extracted from oil palm empty fruit bunch fiber via chlorite bleaching, alkali treatment, and acid hydrolysis. Cellulose was extracted by varying the bleaching duration, which corresponded to 4, 8, or 12 h. Fourier transform infrared (FTIR) analysis showed that the lignin and hemicellulose were significant removed after the bleaching process, whereas no spectral differences were observed in the samples with the increase of bleaching durations. The main removal of the lignin and hemicellulose components had occurred during the bleaching process. There was only slight additional removal of lignin and hemicellulose during the further extraction process with alkali and acid hydrolysis. The peaks at 1740 cm-1 and 1246 cm-1 which represent hemicellulose and lignin, respectively, were not present in the final extracted cellulose. The cellulose yield contents did not increase with the increasing of bleaching duration from 4 h to 12 h. X-ray diffraction (XRD) analysis revealed that the crystallinity and the 200 peak of OPEFB had increased after the bleaching process. Analysis of the visible light transmittance of cellulose, after a bleaching duration of 12 h, demonstrated the highest transmittance due to the disintegration of the fibers. By increasing the bleaching duration, the temperature at 50% weight loss of OPEFB increased, suggesting that the thermal stability of cellulose had improved.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 203 ◽  
Author(s):  
Tugce Senturk Parreidt ◽  
Martina Lindner ◽  
Isabell Rothkopf ◽  
Markus Schmid ◽  
Kajetan Müller

Water loss, gain or transfer results in a decline in the overall quality of food. The aim of this study was to form a uniform layer of sodium alginate-based edible coating (1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, 0.2% tween 80, (w/w)) and investigate the effects on the water barrier characteristics of fresh-cut cantaloupe and strawberries. To this end, a uniform and continuous edible film formation was achieved (0.187 ± 0.076 mm and 0.235 ± 0.077 mm for cantaloupe and strawberries, respectively) with an additional immersion step into a calcium solution at the very beginning of the coating process. The coating application was effective in significantly reducing the water loss (%) of the cantaloupe pieces. However, no significant effect was observed in water vapor resistance results and weight change measurements in a climate chamber (80%→60% relative humidity (RH) at 10 °C). External packaging conditions (i.e., closed, perforated, and open) were not significantly effective on water activity (aw) values of cantaloupe, but were effective for strawberry values. In general, the coating application promoted the water loss of strawberry samples. Additionally, the water vapor transmission rate of stand-alone films was determined (2131 g·100 µm/(m2·d·bar) under constant environmental conditions (23 °C, 100%→50% RH) due to the ability to also evaluate the efficacy in ideal conditions.


2020 ◽  
Author(s):  
Nor Nadiha ◽  
M. Z . ◽  
Jamilah B

Local production of agricultural waste is increasing. It is not fully  utilized  and  can cause an environmental issue if it is not handle wisely. Thus, it is important to increase utilization of lignocellulosic biomass by improving their added value and subsequently decrease the agriculture waste. In this study, rice straw and Leucaena leucocephala were subjected to alkali treatment (4% sodium hydroxide) with different concentration ratio of samples to sodium hydroxide (1:10 to 1:50). The physical and chemical properties of extracted hemicelluloses were studied. The yield of hemicellulose was higher from rice straw compared to Leucaena leucocephala. The chemical functional groups present in hemicellulose were confirmed by Fourier tranform infrared spectroscopy (FTIR). The surface morphology and roughness of xylan were examined by scanning electron microscopy (SEM). Keywords: rice straw, hemicellulose, sodium hydroxide, alkali


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


Sign in / Sign up

Export Citation Format

Share Document