scholarly journals Hemicellulose Extraction and Characterization of Rice Straw and Leucaena Leucocephala

2020 ◽  
Author(s):  
Nor Nadiha ◽  
M. Z . ◽  
Jamilah B

Local production of agricultural waste is increasing. It is not fully  utilized  and  can cause an environmental issue if it is not handle wisely. Thus, it is important to increase utilization of lignocellulosic biomass by improving their added value and subsequently decrease the agriculture waste. In this study, rice straw and Leucaena leucocephala were subjected to alkali treatment (4% sodium hydroxide) with different concentration ratio of samples to sodium hydroxide (1:10 to 1:50). The physical and chemical properties of extracted hemicelluloses were studied. The yield of hemicellulose was higher from rice straw compared to Leucaena leucocephala. The chemical functional groups present in hemicellulose were confirmed by Fourier tranform infrared spectroscopy (FTIR). The surface morphology and roughness of xylan were examined by scanning electron microscopy (SEM). Keywords: rice straw, hemicellulose, sodium hydroxide, alkali

2021 ◽  
Vol 2 (10) ◽  
pp. 1035-1043
Author(s):  
Nabil H Elsayed ◽  
Ghada M. Taha ◽  
Ola A. Mohamed

A step towards minimizing the environmental pollution of leather tanning , leather chrome shavings wastes were treated with Li2CO3 to extract technical or industrial gelatin as an added value material. Isolation and characterization of gelatin obtained from chrome-tanned shavings were done. The alkali hydrolysis products obtained, showed good physical and chemical properties in terms of gel strength, swelling and thermal stability. The optimum hydrolysis conditions using Li2CO3 were found to be 5 hr. extraction at 80°C, swelling time of one day and pH 9.5. The yield was over one third of the original starting waste material.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1891
Author(s):  
Antonio Reina ◽  
Trung Dang-Bao ◽  
Itzel Guerrero-Ríos ◽  
Montserrat Gómez

Metal nanoparticles have been deeply studied in the last few decades due to their attractive physical and chemical properties, finding a wide range of applications in several fields. Among them, well-defined nano-structures can combine the main advantages of heterogeneous and homogenous catalysts. Especially, catalyzed multi-step processes for the production of added-value chemicals represent straightforward synthetic methodologies, including tandem and sequential reactions that avoid the purification of intermediate compounds. In particular, palladium- and copper-based nanocatalysts are often applied, becoming a current strategy in the sustainable synthesis of fine chemicals. The rational tailoring of nanosized materials involving both those immobilized on solid supports and liquid phases and their applications in organic synthesis are herein reviewed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1223-C1223
Author(s):  
Jason Benedict ◽  
Ian Walton ◽  
Dan Patel ◽  
Jordan Cox

Metal-organic Frameworks (MOFs) remain an extremely active area of research given the wide variety of potential applications and the enormous diversity of structures that can be created from their constituent building blocks. While MOFs are typically employed as passive materials, next-generation materials will exhibit structural and/or electronic changes in response to applied external stimuli including light, charge, and pH. Herein we present recent results in which advanced photochromic diarylethenes are combined with MOFs through covalent and non-covalent methods to create photo-responsive permanently porous crystalline materials. This presentation will describe the design, synthesis, and characterization of next-generation photo-switchable diarylethene based ligands which are subsequently used to photo-responsive MOFs. These UBMOF crystals are, by design, isostructural with previously reported non-photoresponsive frameworks which enables a systematic comparison of their physical and chemical properties. While the photoswitching of the isolated ligand in solution is fully reversible, the cycloreversion reaction is suppressed in the UBMOF single crystalline phase. Spectroscopic evidence for thermally induced cycloreversion will be presented, as well as a detailed analysis addressing the limits of X-ray diffraction techniques applied to these systems.


Química Nova ◽  
2021 ◽  
Author(s):  
Kamila Ody ◽  
João Jesus ◽  
Carlos Cava ◽  
Anderson Albuquerque ◽  
Ary Maia ◽  
...  

ASSESSMENT OF THE ELECTRONIC STRUCTURE OF THE MONOCLINIC PHASE OF NIOBIUM OXIDE BASED ON THE USE OF DIFFERENT DENSITY FUNCTIONALS. Niobium oxides, Nb2O5, are considered semiconductor materials with very attractive physical and chemical properties for applications in many areas, such as catalysis, sensors, medical, aerospace, etc. Especially, the characterization of Nb2O5-based nanostructures with monoclinic structure has received much attention in recent years. However, despite the great importance of this system, some of its fundamentals properties are still not fully understood. Hence, this work aims to apply the theoretical methodologies through Density Functional Theory (DFT) calculations in periodic models based on the use of different density functionals (like B1WC, B3PW, B3LYP, PBE0, PBESOL0, SOGGAXC, and WC1LYP) to investigate the physical and chemical properties of the monoclinic structure of Nb2O5. The band structures, energy bandgap, density of state, and vibrational properties, as well as order-disorder effects on the monoclinic structure of Nb2O5 are investigated in this study. Our theoretical results show a better agreement with experimental data for the B3LYP functional and hence lead to new perspectives on the deeper physicochemical understanding of the monoclinic Nb2O5. From these computational tools, it is possible to unravel the relations between structure and properties, which may contribute to the future development of new devices and applications based on these materials.


2019 ◽  
Vol 40 (6) ◽  
pp. 2581
Author(s):  
Adriana Cristina Bordignon ◽  
Maria Luiza Rodrigues de Souza ◽  
Eliane Gasparino ◽  
Edson Minoru Yajima ◽  
Jesuí Vergílio Visentainer ◽  
...  

After Nile tilapia skin was preserved using the methods of freezing and dry salting, characteristics of skin gelatin were evaluated with regard to yield, rheological features and physical and chemical properties. Preservation was performed after filleting, at which time skins were either frozen (-18°C) for 7 days or salted (25°C) for 7 days. Although no differences (p > 0.05) were observed with respect to humidity, protein, lipid, ash and calcium levels, gelatin from salted skins had a higher concentration of iron relative to frozen skins. Further, twenty-three fatty acids were detected in salted skins compared with merely three found in skin derived gelatin. Of amino acids found, glycine, alanine, proline and arginine were the most abundant. Hydroxyproline abundance in salted and frozen skin gelatin were 8.76% and 8.71%, respectively. In addition, salted skin gelatins had a greater accumulation of saturated fatty acids and lower rates of monounsaturated fatty acids. Salted skin gelatin had the highest yield (18g × 100g-1), gel strength (200 g) and viscosity (19.02mPas) when compared to the yield (17g × 100g-1), gel strength (12.7g) and viscosity (9.16 mPas) of frozen skins. Results show that gelatin from dry salted skin had the best yield and also had relatively better rheological properties, more iron, and better coloration relative to gelatin obtained from frozen skins of Nile tilapia.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5730
Author(s):  
Xianxian Qin ◽  
Jixin Luo ◽  
Zhigao Liu ◽  
Yunlin Fu

Rice straw is a common agricultural waste. In order to increase the added value of rice straw and improve the performance of rice straw biochar. MgO-modified biochar (MRBC) was prepared from rice straw at different temperatures, pyrolysis time and MgCl2 concentrations. The microstructure, chemical and crystal structure were studied using X-ray diffraction (XRD), a Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption desorption isotherms and Elementary Analysis (EA). The results showed that the pyrolysis temperature had significant influence on the structure and physicochemical property of MRBCs. MRBC-2 h has the richest microporous structure while MRBC-2 m has the richest mesoporous structure. The specific surface area (from 9.663 to 250.66 m2/g) and pore volume (from 0.042 to 0.158 cm3/g) of MRBCs increased as temperature rose from 300 to 600 °C. However, it was observed MgCl2 concentrations and pyrolysis time had no significant influence on pore structure of MRBCs. As pyrolysis temperature increased, pH increased and more oxygen-containing functional groups and mineral salts were formed, while MgO-modified yield, volatile matter, total content of hydrogen, oxygen, nitrogen, porosity and average pore diameter decreased. In addition, MRBCs formed at high temperature showed high C content with a low O/C and H/C ratios.


2019 ◽  
Vol 942 ◽  
pp. 40-49
Author(s):  
Yulia Murashkina ◽  
Olga B. Nazarenko

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 134
Author(s):  
Masaki Watanabe ◽  
Yoshihide Hashimoto ◽  
Tsuyoshi Kimura ◽  
Akio Kishida

The purpose of this study was to evaluate the physical and chemical properties of engineering plastics processed using supercritical CO2. First, we prepared disk-shaped test pieces via a general molding process, which were plasticized using supercritical CO2 at temperatures lower than the glass-transition points of engineering plastics. Amorphous polymers were plasticized, and their molecular weight remained nearly unchanged after treatment with supercritical CO2. The mechanical strength significantly decreased despite the unchanged molecular weight. The surface roughness and contact angle increased slightly, and electrical properties such as the rate of charging decreased significantly. These results suggest that supercritical CO2 could be used for a new molding process performed at lower temperatures than those used in general molding processes, according to the required properties.


Sign in / Sign up

Export Citation Format

Share Document