scholarly journals Rural Electrification: Practical Exposition of Hybrid Solar PV-Wind for Grid Integrated Power Systems in India

Reliable electric power supply is still remained a major problem in rural India. Off grid renewable sources of energy have been applied in the last few years to increase reliability but not succeeding to be realistic because of too high energy costs compared to the national grid. Grid Integrated Minigrids with Storage (Grid Integrated Mini Grids) have potential to provide reliable power supply at reasonably priced by combining Mini-Grids and National Grid services. This research paper analyzed different aspects of the GRID INTEGRATED MINI GRIDS practicability. The feasibility of the use of hybrid - solar Photovoltaic (PV) systems and wind in Grid Integrated Minigrids

The need to electrify all rural areas in India is quite compelling. However, the focus has now shifted from traditional fuel-based systems to generate electricity to renewable sources for energy generation. Though there are subsidies and policies that encourage the use of solar Photovoltaic (PV) systems, there is a need for an appropriate framework. This framework could not only offer substantial directions but it would also act as grounds to enhance rural electrification in India using solar PVs. From this perspective, the current research attempts to structure an innovative framework for solar PV system that could facilitate rural electrification in India. In particular, the district of Damoh in Madhya Pradesh was chosen as there are many villages without electricity in this district. PVsyst software was utilized to simulate the outcomes that included mathematical models and diverse components based on PV, for simulation. Three designs were developed to facilitate the simulation. These included; PVs linked with microgrid devoid of battery, individual PV systems without microgrid link and solar PVs linked to microgrid with battey. The framework for rural electrification using solar PVs will offer policy makers with insights with regards to implementing PV systems. It will also offer inputs as to the feasibility of implementing a specific system on several parameters. These would comprise of; number of households within a village, detached households etc. Nonetheless, research in future is also warranted to explore the scope for other sources of renewable energy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anas Sani Maihulla ◽  
Ibrahim Yusuf ◽  
Muhammad Salihu Isa

PurposeSolar photovoltaic (PV) is commonly used as a renewable energy source to provide electrical power to customers. This research establishes a method for testing the performance reliability of large grid-connected PV power systems. Solar PV can turn unrestricted amounts of sunlight into energy without releasing carbon dioxide or other contaminants into the atmosphere. Because of these advantages, large-scale solar PV generation has been increasingly incorporated into power grids to meet energy demand. The capability of the installation and the position of the PV are the most important considerations for a utility company when installing solar PV generation in their system. Because of the unpredictability of sunlight, the amount of solar penetration in a device is generally restricted by reliability constraints. PV power systems are made up of five PV modules, with three of them needing to be operational at the same time. In other words, three out of five. Then there is a charge controller and a battery bank with three batteries, two of which must be consecutively be in operation. i.e. two out of three. Inverter and two distributors, all of which were involved at the same time. i.e. two out of two. In order to evaluate real-world grid-connected PV networks, state enumeration is used. To measure the reliability of PV systems, a collection of reliability indices has been created. Furthermore, detailed sensitivity tests are carried out to examine the effect of various factors on the efficiency of PV power systems. Every module's test results on a realistic 10-kW PV system. To see how the model works in practice, many scenarios are considered. Tables and graphs are used to show the findings.Design/methodology/approachThe system of first-order differential equations is formulated and solved using Laplace transforms using regenerative point techniques. Several scenarios were examined to determine the impact of the model under consideration. The calculations were done with Maple 13 software.FindingsThe authors get availability, reliability, mean time to failure (MTTF), MTTF sensitivity and gain feature in this research. To measure the reliability of PV systems, a collection of reliability indices has been created. Furthermore, detailed sensitivity tests are carried out to examine the effect of various factors on the efficiency of PV power systems.Originality/valueThis is the authors' original copy of the paper. Because of the importance of the study, the references are well-cited. Nothing from any previously published articles or textbooks has been withdrawn.


Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Rooftop solar photovoltaic(PV) installation in India have increased in last decade because of the flat 40 percent subsidy extended for rooftop solar PV systems (3 kWp and below) by the Indian government under the solar rooftop scheme. From the residential building owner's perspective, solar PV is competitive when it can produce electricity at a cost less than or equal grid electricity price, a condition referred as “grid parity”. For assessing grid parity of 3 kWp and 2 kWp residential solar PV system, 15 states capital and 19 major cities were considered  for the RET screen simulation by using solar isolation, utility grid tariff, system cost and other economic parameters. 3 kWp and 2 kWp rooftop solar PV with and without subsidy scenarios were considered for simulation using RETscreen software. We estimate that without subsidy no state could achieve grid parity for 2kWp rooftop solar PV plant. However with 3 kWp rooftop solar PV plant only 5 states could achieve grid parity without subsidy and with government subsidy number of states increased to 7, yet wide spread parity for residential rooftop solar PV is still not achieved. We find that high installation costs, subsidized utility grid supply to low energy consumer and financing rates are major barriers to grid parity.


2014 ◽  
Vol 627 ◽  
pp. 357-364 ◽  
Author(s):  
Goran Radovic ◽  
Vera Murgul ◽  
Nikolai Vatin ◽  
Ekaterina Aronova

The article deals with the concept of solar photovoltaic systems use in power supply systems. An analysis of local solar resources potential has been carried out, and optimal orientation points of radiant heat absorbing photovoltaic panels have been chosen to achieve maximum energy performance. Simulation of electric power systems having different configurations has been implemented using the software program Homer. It has been stated that a combination of solar and diesel energy systems is considered to be an optimal solution under the weather conditions of Montenegro. The systems working together make it possible to reduce maintenance costs significantly and adjust capacity generation schedule with due account for energy consumption features to a maximum extent. This allows generating electric power at less cost and results in a more reliable and continuous power supply without failures for a consumer chosen.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4820 ◽  
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison ◽  
James Darbyshire

More than 2 million houses in Australia have installed solar photovoltaic (PV) systems; however, apartment buildings have adopted a low percentage of solar PV and battery storage installations. Given that grid usage reduction through PV and battery storage is a primary objective in most residential buildings, apartments have not yet fully benefited from installations of such systems. This research presents shared microgrid configurations for three apartment buildings with PV and battery storage and evaluates the reduction in grid electricity usage by analyzing self-sufficiency. The results reveal that the three studied sites at White Gum Valley achieved an overall self-sufficiency of more than 60%. Owing to the infancy of the shared solar and battery storage market for apartment complexes and lack of available data, this study fills the research gap by presenting preliminary quantitative findings from implementation in apartment buildings.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1213 ◽  
Author(s):  
A. Sayed ◽  
M. El-Shimy ◽  
M. El-Metwally ◽  
M. Elshahed

Recently, solar power generation is significantly contributed to growing renewable sources of electricity all over the world. The reliability and availability improvement of solar photovoltaic (PV) systems has become a critical area of interest for researchers. Reliability, availability, and maintainability (RAM) is an engineering tool used to address operational and safety issues of systems. It aims to identify the weakest areas of a system which will improve the overall system reliability. In this paper, RAM analysis of grid-connected solar-PV system is presented. Elaborate RAM analysis of these systems is presented starting from the sub-assembly level to the subsystem level, then the overall system. Further, an improved Reliability Block Diagram is presented to estimate the RAM performance of seven practical grid-connected solar-PV systems. The required input data are obtained from worldwide databases of failures, and repair of various subassemblies comprising various meteorological conditions. A novel approach is also presented in order to estimate the best probability density function for each sub-assembly. The monitoring of the critical subassemblies of a PV system will increase the possibility not only for improving the availability of the system, but also to optimize the maintenance costs. Additionally, it will inform the operators about the status of the various subsystems of the system.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1921 ◽  
Author(s):  
B. Kavya Santhoshi ◽  
K. Mohana Sundaram ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen ◽  
Prabhakaran K. K.

Solar Photovoltaic (PV) systems have been in use predominantly since the last decade. Inverter fed PV grid topologies are being used prominently to meet power requirements and to insert renewable forms of energy into power grids. At present, coping with growing electricity demands is a major challenge. This paper presents a detailed review of topological advancements in PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The different types of inverters used in the literature in this context are presented. Reactive power is one of the ancillary services provided by PV. It is recommended that reactive power from the inverter to grid be injected for reactive power compensation in localized networks. This practice is being implemented in many countries, and researchers have been trying to find an optimal way of injecting reactive power into grids considering grid codes and requirements. Keeping in mind the importance of grid codes and standards, a review of grid integration, the popular configurations available in literature, Synchronization methods and standards is presented, citing the key features of each kind. For successful integration with a grid, coordination between the support devices used for reactive power compensation and their optimal reactive power capacity is important for stability in grid power. Hence, the most important and recommended intelligent algorithms for the optimization and proper coordination are peer reviewed and presented. Thus, an overview of Solar PV energy-fed inverters connected to the grid is presented in this paper, which can serve as a guide for researchers and policymakers.


2012 ◽  
Author(s):  
Firdaus Muhammad Sukki ◽  
Roberto Ramirez Iniguez ◽  
Scott G. Mcmeekin ◽  
Brian G. Stewart ◽  
Barry Clive

Solar energy has become a matter of global attention in the past few years. This paper explores the use and benefit of solar concentrators in the solar photovoltaic (PV) systems. First, a short literature review of previous research on the usage of solar concentrators in improving solar PV system performance and reducing the cost of implementation is presented. This is followed by an overview of SolarBrane, an example of a Building Integrated photovoltaic (BIPV) system which uses an optical concentrator in the solar PV design. An optimised design of the SolarBrane is also discussed afterwards. A financial benefit study is conducted to compare the average return of investment of using the optimised SolarBrane and traditional solar PV installed in Malaysia’s environment. SolarBrane has proven to be a good alternative to achieve costeffective solar PV system. The financial analysis simulated under the new Malaysian Feed–In Tariff scheme indicates that the optimised SolarBrane could potentially reduce the initial cost of implementation by 40% and generate higher return, close to 20%, when compared to traditional solar PV systems. Key words: Solar photovoltaic; solar concentrator; solarBrane; dielectric totally internally reflecting concentrator; financial analysis


2017 ◽  
Vol 24 (2) ◽  
pp. 358-382 ◽  
Author(s):  
Minhyun LEE ◽  
Taehoon HONG ◽  
Choongwan KOO ◽  
Chan-Joong KIM

Despite the steady growth and price reductions of solar photovoltaic (PV) market in the United States (U.S.), the solar PV market still depends on financial support and incentives due to its high initial investment cost. Therefore, this study aimed to conduct a break-even analysis and impact analysis of residential solar PV systems by state in the U.S., focused on state solar incentives. Three indexes (i.e., net present value, profitability index (PI) and payback period) were used to evaluate the investment value of the residential solar PV systems considering state solar incentives. Furthermore, PI increase ratio was used to analyze the impact of state solar incentives on the economic feasibility of the residential solar PV systems in each state. As a result, it was found that 18 of the 51 target cities have reached the break-even point and seven of the 51 target cities showed great improvement of the economic feasibility of solar PV systems in the U.S. due to excellent state solar incentives. The results of this study can help policy makers to evaluate and compare the economic impacts of the residential solar PV systems by state in the U.S.


2021 ◽  
Vol 83 (4) ◽  
pp. 1-16
Author(s):  
Alaa Hamza Omran ◽  
Dalila Mat Said ◽  
Sadiq H. Abdulhussain ◽  
Siti Maherah Hussin ◽  
Nasarudin Ahmad

The power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such hazards is crucial in the early phases of the distribution. In this paper, a detailed review of modern approaches for the identification of DC arc faults in PV is presented. In addition, a thorough comparison is performed between various DC arc-fault models, characteristics, and approaches used for the identification of the faults.


Sign in / Sign up

Export Citation Format

Share Document