scholarly journals Smart ECG Monitoring Wireless System

Under advanced patient diagnostic approach, expensive wearable Holter Electrocardiography unit is used to record cardiac parameters for 24 or 48 hours. This may cause inconvenience to patient due to weight, dangling wires and taxing additional time to transfer data to the hospital from patient’s location. IOT plays a crucial role to read and transfer ECG data from remote places effectively for individuals and more. In this paper low cost, low power, portable ECG monitoring system is designed and experimented. Hardware-software co-design realizes real-time, wireless, acquisition of cardiac parameters. AD8232 is used to capture cardiac signals and processing is realized using MSP432P401R microcontroller and IOT. Under the event driven approach, in case of specific abnormality, Electrocardiogram (ECG) signal is transmitted, otherwise no transmission is allowed in order to reduce power consumption.This approach increases battery life time and reduces complexity.

2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Daniel Cuevas-González ◽  
Juan Pablo García-Vázquez ◽  
Miguel Bravo-Zanoguera ◽  
Roberto López-Avitia ◽  
Marco A. Reyna ◽  
...  

In this paper, we propose investigating the ability to integrate a portable Electrocardiogram (ECG) device to commercial platforms to analyze and visualize information hosted in the cloud. Our ECG system based on the ADX8232 microchip was evaluated regarding its performance of recordings of a synthetic ECG signal for periods of 1, 2, 12, 24, and 36 h on six different cloud services to investigate whether it maintains reliable ECG records. Our results show that there are few cloud services capable of 24 h or longer ECG recordings. But some existing services are limited to small file sizes of less than 1,000,000 lines or 100 MB, or approximately 45 min of an ECG recording at a sampling rate of 360 Hz, making it difficult an extended time monitoring. Cloud platforms reveal some limitations of storage and visualization in order to provide support to health care specialists to access information related to a patient at any time.


2019 ◽  
Vol 29 (08) ◽  
pp. 2050133
Author(s):  
Anas Fouad Ahmed ◽  
Mohammed Abdulmunem Ahmed ◽  
Hussain Mustafa Bierk

This paper introduces an efficient and robust method for heartbeat detection based on the calculated angles between the successive samples of electrocardiogram (ECG) signal. The proposed approach involves three stages: filtering, computing the angles of the signal and thresholding. The suggested method is applied to two different types of ECG databases (QTDB and MIT-BIH). The results were compared with the other algorithms suggested in previous works. The proposed approach outperformed the other algorithms, in spite of its simplicity and their fast calculations. These features make it applicable in real-time ECG diagnostics systems. The suggested method was implemented in real-time using a low cost ECG acquisition system and it shows excellent performance.


Author(s):  
Nurul Huda ◽  
Sadia Khan ◽  
Ragib Abid ◽  
Samiul Based Shuvo ◽  
Mir Maheen Labib ◽  
...  

Continuously monitoring the Electrocardiogram (ECG) is an essential tool for Cardiovascular Disease (CVD) patients. In low-resource countries, the hospitals and health centers do not have adequate ECG systems, and this unavailability exacerbates the patients' health condition. Lack of skilled physicians, limited availability of continuous ECG monitoring devices, and their high prices, all lead to a higher CVD burden in the developing countries. To address these challenges, we present a low-cost, low-power, and wireless ECG monitoring system with deep learning-based automatic arrhythmia detection. Flexible fabric-based design and the wearable nature of the device enhances the patient's comfort while facilitating continuous monitoring. An AD8232 chip is used for the ECG Analog Front-End (AFE) with two 450 mi-Ah Li-ion batteries for powering the device. The acquired ECG signal can be transmitted to a smart-device over Bluetooth and subsequently sent to a cloud server for analysis. A 1-D Convolutional Neural Network (CNN) based deep learning model is developed that provides an accuracy of 94.03% in classifying abnormal cardiac rhythm on the MIT-BIH Arrhythmia Database.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Po-Cheng Su ◽  
Ya-Hsin Hsueh ◽  
Ming-Ta Ke ◽  
Jyun-Jhe Chen ◽  
Ping-Chen Lai

Some patients are uncomfortable with being wired to a device to have their heart activity measured. Accordingly, this study adopts a noncontact electrocardiogram (ECG) measurement system using coupled capacitance in a conductive textile. The textiles can be placed on a chair and are able to record some of the patient’s heart data. Height and distance between the conductive textile electrodes were influential when trying to obtain an optimal ECG signal. A soft and highly conductive textile was used as the electrode, and clothing was regarded as capacitance insulation. The conductive textile and body were treated as the two electrode plates. This study found that placing the two conductive textiles at the same height provided better data than different heights. The system also enabled identifying the P, Q, R, S, and T waves of the ECG signal and eliminated unnecessary noise successfully.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Eulalia Balestrieri ◽  
Pasquale Daponte ◽  
Luca De Vito ◽  
Francesco Picariello ◽  
Sergio Rapuano ◽  
...  

<p><span lang="EN-US">The paper presents an Internet of Things (IoT) prototype which consists of a data acquisition device wirelessly connected to Internet via Wi-Fi, for continuous electrocardiogram (ECG) monitoring. The proposed system performs a novel Compressed Sensing (CS) based method on ECG signal with the aim of reducing the amount of transmitted data, thus realizing an efficient way to increase the battery life of such devices. For the assessment of the energy consumption of the device, an experimental setup was arranged and its description is presented. The evaluation of the reconstruction quality of the ECG signal in terms of Percentage of Root-mean-squared Difference (PRD</span><span lang="EN-US">) is reported for several Compression Ratios (CRs</span><span lang="EN-US">). The obtained experimental results clearly demonstrate the robustness and usefulness of the Wi-Fi based IoT devices adopting the considered CS-method for data compression of ECG signals. Furthermore, it allows reducing the energy consumption of the IoT device, by increasing the CR</span><span lang="EN-US">, without significantly degrading the quality of the reconstructed ECG signal.</span></p>


2019 ◽  
Vol 14 (1) ◽  
pp. 68-74 ◽  
Author(s):  
A.S. Kulkarni ◽  
M. Suchetha ◽  
N. Kumaravel

Background: An electrocardiogram device monitors the cardiac status of a patient by recording the heart’s electrical potential vs time. Such devices play a very important role to save the life of patients who survive a heart attack or suffer from these patients. An early detection of conditions that lead to the onset of cardiac arrest allows doctors to provide proper treatment on time and prevents death or disability from cardiac arrest. Most developing countries have very poor information about these health care issues. Methods: An actual deployment of the system was used to evaluate key aspects of the system architecture, in particular, the possibility to monitor the ECG signal of single patients in a large area and for a long time the possibility to access ECG data through the web interface. The test deployment consisted of ECG sensor AD8232, wi-fi module and IoT server. The IoT server was installed on a Linux/ windows machine. The wifi has been configured to connect to the server, through an ADSL router. Conclusion: We have proposed a wireless wearable ECG monitoring system enabled with an IoT platform that integrates heterogeneous nodes of ECG sensor and applications, has a long battery life and provides a high-quality ECG signal. The system allows monitoring single/multiple patients on a relatively large indoor area (home, building, nursing home, etc). As observed, this result is obtained through a careful set of choices at the level of components, circuit solutions, and algorithms. We would like to stress the fact that a dedicated overall output is not enough to achieve an advantage in terms of overall sensor performance. The latter depends on the optimization of the whole sensor. Indeed, this proposed ECG sensor, based on a high-performance ADC and an arm processor, provides much better performance, in terms of power consumption and noise, than many proposed system based on a purposely designed front-end chip.


Advanced Technologies such as Internet of Things, Machine Networking give rise to the deployment of autonomous Wireless Sensor Nodes. They are used for various domains namely battlefield monitoring, enemy detection and monitoring the environment change. These Wireless Sensor Nodes have the properties of low cost and high battery life. NL (Network Lifetime) is an important phase of Wireless Sensor Network (WSNs), in which the nodes can maintain sensing for a more amount of time. NL can be improved by use of multiple techniques namely Opportunistic Transmission, Scheduling of Timed Data Packets, Clustering of Nodes, Energy Harvesting and Connectivity. This paper provides the energy consumption computation, life time ratio definition and the overview of NL improvement techniques. The paper also presents brief review of the Destination based and Source based routing algorithm


Author(s):  
H. O. Colijn

Many labs today wish to transfer data between their EDS systems and their existing PCs and minicomputers. Our lab has implemented SpectraPlot, a low- cost PC-based system to allow offline examination and plotting of spectra. We adopted this system in order to make more efficient use of our microscopes and EDS consoles, to provide hardcopy output for an older EDS system, and to allow students to access their data after leaving the university.As shown in Fig. 1, we have three EDS systems (one of which is located in another building) which can store data on 8 inch RT-11 floppy disks. We transfer data from these systems to a DEC MINC computer using “SneakerNet”, which consists of putting on a pair of sneakers and running down the hall. We then use the Hermit file transfer program to download the data files with error checking from the MINC to the PC.


2021 ◽  
Vol 11 (13) ◽  
pp. 5908
Author(s):  
Raquel Cervigón ◽  
Brian McGinley ◽  
Darren Craven ◽  
Martin Glavin ◽  
Edward Jones

Although Atrial Fibrillation (AF) is the most frequent cause of cardioembolic stroke, the arrhythmia remains underdiagnosed, as it is often asymptomatic or intermittent. Automated detection of AF in ECG signals is important for patients with implantable cardiac devices, pacemakers or Holter systems. Such resource-constrained systems often operate by transmitting signals to a central server where diagnostic decisions are made. In this context, ECG signal compression is being increasingly investigated and employed to increase battery life, and hence the storage and transmission efficiency of these devices. At the same time, the diagnostic accuracy of AF detection must be preserved. This paper investigates the effects of ECG signal compression on an entropy-based AF detection algorithm that monitors R-R interval regularity. The compression and AF detection algorithms were applied to signals from the MIT-BIH AF database. The accuracy of AF detection on reconstructed signals is evaluated under varying degrees of compression using the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm. Results demonstrate that compression ratios (CR) of up to 90 can be obtained while maintaining a detection accuracy, expressed in terms of the area under the receiver operating characteristic curve, of at least 0.9. This highlights the potential for significant energy savings on devices that transmit/store ECG signals for AF detection applications, while preserving the diagnostic integrity of the signals, and hence the detection performance.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


Sign in / Sign up

Export Citation Format

Share Document