scholarly journals Development of Iot based Smart Security and Monitoring Device using Digital Defence for Agriculture

The agricultural sector, which is the powerhouse of Indian financial system, needs protection. Safety, not only in terms of infrastructure as well as in terms of agricultural commodities, requires assistance and support at a very preliminary stage, such as protection from attacks by rats or pests in farms or seed stores. These problems could also be carefully considered. The convergence of conventional technology with all the latest technologies including the IOT (internet of things) and the Wireless Signal Systems will contribute to ecological modernization. Taking this system in mind, we are investigating a baseband processor on the' Internet of Things' that will be able to analyze the detected knowledge and then communicating it to the client. In our present system, we address the actual obstacle of farmers and the threat of endangered species and pest harm utilizing detectors. In the existing system, many peasants are afraid of pests reaching the fields and absolutely killing the crop. It creates a financial loss for peasants when anticipating a benefit.

Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 61-63 ◽  
Author(s):  
Akihiro Fujii

The Internet of Things (IoT) is a term that describes a system of computing devices, digital machines, objects, animals or people that are interrelated. Each of the interrelated 'things' are given a unique identifier and the ability to transfer data over a network that does not require human-to-human or human-to-computer interaction. Examples of IoT in practice include a human with a heart monitor implant, an animal with a biochip transponder (an electronic device inserted under the skin that gives the animal a unique identification number) and a car that has built-in sensors which can alert the driver about any problems, such as when the type pressure is low. The concept of a network of devices was established as early as 1982, although the term 'Internet of Things' was almost certainly first coined by Kevin Ashton in 1999. Since then, IoT devices have become ubiquitous, certainly in some parts of the world. Although there have been significant developments in the technology associated with IoT, the concept is far from being fully realised. Indeed, the potential for the reach of IoT extends to areas which some would find surprising. Researchers at the Faculty of Science and Engineering, Hosei University in Japan, are exploring using IoT in the agricultural sector, with some specific work on the production of melons. For the advancement of IoT in agriculture, difficult and important issues are implementation of subtle activities into computers procedure. The researchers challenges are going on.


Author(s):  
Rutvik Solanki

Abstract: Technological advancements such as the Internet of Things (IoT) and Artificial Intelligence (AI) are helping to boost the global agricultural sector as it is expected to grow by around seventy percent in the next two decades. There are sensor-based systems in place to keep track of the plants and the surrounding environment. This technology allows farmers to watch and control farm operations from afar, but it has a few limitations. For farmers, these technologies are prohibitively expensive and demand a high level of technological competence. Besides, Climate change has a significant impact on crops because increased temperatures and changes in precipitation patterns increase the likelihood of disease outbreaks, resulting in crop losses and potentially irreversible plant destruction. Because of recent advancements in IoT and Cloud Computing, new applications built on highly innovative and scalable service platforms are now being developed. The use of Internet of Things (IoT) solutions has enormous promise for improving the quality and safety of agricultural products. Precision farming's telemonitoring system relies heavily on Internet of Things (IoT) platforms; therefore, this article quickly reviews the most common IoT platforms used in precision agriculture, highlighting both their key benefits and drawbacks


2020 ◽  
Vol 17 ◽  
pp. 00050
Author(s):  
E. F. Amirova ◽  
O. V. Kirillova ◽  
M. G. Kuznetsov ◽  
Sh. M. Gazetdinov ◽  
G. H. Gumerova

The article analyzes the research results of a number of analytical agencies regarding the growth rate and key problems associated with the introduction of the “Internet of things” (IoT) in the agricultural economy. The issues of the development of the agro-industrial complex in the context of the development of the digital economy, the experience of introducing the digital economy in the agricultural sector of developed countries and the possibilities of its application in agriculture in Russia are considered. The authors focuses on the positive aspects of the influence of the “Internet of things” on the functioning and development of modern agricultural markets at the macro and micro levels, and the change in the professional structure of the agricultural industry


2019 ◽  
Vol 13 (1) ◽  
pp. 14-20 ◽  
Author(s):  
V. M. Korotchenya ◽  
G. I. Lichman ◽  
I. G. Smirnov

Currently, the influence of program documents on digital agriculture development is rather great in our country. Within the framework of the European Association of Agricultural Mechanical Engineering, a relevant definition of agriculture 4.0 has been elaborated and introduced.Research purpose: offering general recommendations on the digitalization of agriculture in RussiaMaterials and methods. The authors make use of the normative approach: the core of digital agriculture is compared with the current state of the agricultural sector in Russia.Results and discussion. The analysis has found that digital agriculture (agriculture 4.0 and 5.0) is based on developed mechanized technologies (agriculture 2.0), precision agriculture technologies (agriculture 3.0), the use of such digital technologies and technical means as the Internet of things, artificial intelligence, and robotics. The success of introducing digital agriculture depends on the success of all the three levels of the system. However, the problem of the lack of agricultural machinery indicates insufficient development of mechanized technologies;  poor implementation of precision agriculture technologies means the lack of experience of using these technologies by the majority of farms in our country; an insufficient number of leading Russian IT companies (such as Amazon, Apple, Google, IBM, Intel, Microsoft etc.) weakens the country’s capacity in making a breakthrough in the development of the Internet of things, artificial intelligence, and robotics.Conclusions.The authors have identified the need to form scientific approaches to the digitization of technological operations used in the cultivation of agricultural crops and classified precision agriculture technologies. They have underlined that the digitization of agricultural production in Russia must be carried out along with intensified mechanization (energy saturation); also, to introduce technologies of precision agriculture and digital agriculture, it is necessary to organize state-funded centers for training farmers in the use of these technologies. Finally, it is necessary to take measures to strengthen the development of the IT sphere, as well as formulate an integral approach to the problem of digitalization.


2020 ◽  
Vol 17 (9) ◽  
pp. 4598-4603
Author(s):  
Akanksha Kumari ◽  
Prabhat Kumar Sahu

Agriculture is one of the primary sectors in the Indian economy. Over the past several years, agricultural scientific techniques and agricultural implements have developed in the region, replacing the traditional method of farming. By which the economic condition of the farmers has improved. In addition, there are still some small farmers in India who use the old traditional methods of farming of agriculture because they do not have the resources to use modern methods. Besides, it is the only region that has contributed not only to the development of itself but also to other areas of the country. Agriculture has a major contribution to the country’s GDP and national income. In addition, it requires a huge manpower and labour which constitutes about 80% of the total workforce. Employees work not only directly but indirectly in the agricultural sector. Irrigation is the use of controlled amounts of water at the required intervals to the plants. Effective irrigation will affect seed development, germination, root growth, utilization of nutrients, plant growth and revival, yield and quality of the entire development process. The farmer knows how much water he has to give to the crop and when crop is to be planted, but the best system of irrigation it is necessary to have the information about use of equipment, plant species, soil structure, soil preparation and It is also important to be aware of all these that at what stage to watering the plant. The aim of this research paper is to describe how the Internet of Things (IoT) framework plays an important role in the field of agriculture. Here to show the importance of IoT in agriculture, we choose “Smart Drip Irrigation System.”


2019 ◽  
Vol 14 (3) ◽  
pp. 133-137 ◽  
Author(s):  
Эльмира Амирова ◽  
Elmira Amirova ◽  
Ильнур Сафиуллин ◽  
Il'nur Safiullin ◽  
Линар Ибрагимов ◽  
...  

State regulation of the agricultural sector is one of the main elements of increasing the efficiency of the country’s agricultural sector. The article discusses the problems of using the organizational and economic mechanism to regulate the agricultural sector in the Russian Federation, analyzes the issues of regulation of the agricultural sector in the context of the development of digitalization. State regulation of the development of the digital economy in agro-industrial sectors involves the development of the legal framework for access to information stored on the Internet of “things platforms”, the protection of the Russian segment of the Internet of things, for this it is necessary to create a closed network in the country and to solve the problems of import substitution in the context of a lack of domestic equipment. Implementation of state programs on digitalization of agriculture will be a link in the construction of the “Digital Economy of the Russian Federation”. In conclusion, priority directions for improving the mechanisms of state regulation of the agricultural sector are given.


2020 ◽  
Vol 11 (2) ◽  
pp. 18-32
Author(s):  
Opeyemi Peter Ojajuni ◽  
Yasser Ismail ◽  
Albertha Lawson

The Internet of Things (IoT) allows different devices with internet protocol (IP) address to be connected together via the internet to collect, provide, store, and exchange data amongst themselves. The distributed denial of service (DDoS) attack is one of the inevitable challenges which should be addressed in the development of the IoT. A DDoS attack has the potential to render a victim's services unavailable, which can then lead to additional challenges such as website outage, financial loss, reputational damage and loss of confidential information. In this article, a framework of the SDN controller via an application programming interface (API) is compared to an existing framework. SDN provides a new architecture that can detect and mitigate a DDoS attack so that it makes the networking functionalities programmable via the API and also it centralizes the control management of the IoT devices. Experimental results show the capability of the SDN framework to analyze a real-time traffic of the SDN controller via the API by setting a control bandwidth usage threshold using the API.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Houda Orchi ◽  
Mohamed Sadik ◽  
Mohammed Khaldoun

The agricultural sector remains a key contributor to the Moroccan economy, representing about 15% of gross domestic product (GDP). Disease attacks are constant threats to agriculture and cause heavy losses in the country’s economy. Therefore, early detection can mitigate the severity of diseases and protect crops. However, manual disease identification is both time-consuming and error prone, and requires a thorough knowledge of plant pathogens. Instead, automated methods save both time and effort. This paper presents a contemporary overview of research undertaken over the past decade in the field of disease identification of different crops using machine learning, deep learning, image processing techniques, the Internet of Things, and hyperspectral image analysis. Additionally, a comparative study of several techniques applied to crop disease detection was carried out. Furthermore, this paper discusses the different challenges to be overcome and possible solutions. Then, several suggestions to address these challenges are provided. Finally, this research provides a future perspective that promises to be a highly useful and valuable resource for researchers working in the field of crop disease detection.


2021 ◽  
Vol 8 (4) ◽  
pp. 685-733
Author(s):  
Jennifer Zwagerman

Technology advancements make life, work, and play easier and more enjoyable in many ways. Technology issues are also the cause of many headaches and dreams of living out the copier destruction scene from the movie “Office Space.” Whether it be user error or technological error, one key technology issue on many minds right now is how all the data produced every second of every day, in hundreds of different ways, is used by those that collect it. How much data are we talking about here? In 2018, the tech company Domo estimated that by 2020 “1.7 MB of data will be created every second” for every single person on Earth. In 2019, Domo’s annual report noted that “Americans use 4,416,720 GB of internet data including 188,000,000 emails, 18,100,000 texts and 4,497,420 Google searches every single minute.” And this was before the pandemic of 2020, which saw reliance on remote technology and the internet skyrocket. It is not just social media and working from home that generates data—the “Internet of Things” (“IoT”) is expanding exponentially. From our homes (smart appliances and thermostats), to entertainment (smart speakers and tablets), to what we wear (smartwatches and fitness devices), we are producing data constantly. Over 30 billion devices currently make up the IoT, and that number will double by 2025. The IoT is roughly defined as “devices—from simple sensors to smartphones and wearables—connected together.” That connection allows the devices to “talk” to each other across networks that stretch across the world, sharing information that in turn can be analyzed (alone or combined with data from other users) in ways that may be beneficial to the user or the broader economy. The key word in that last sentence is “may.” When it comes to the data that individuals and businesses across the world produce every second of every day, some of it—perhaps most of it—could be used in ways that are not beneficial to the user or the entire economy. Some data types can be used to cause harm in obvious ways, such as personal identifying information in cases of identity theft. While some data types may seem innocuous or harmful when viewed on their own, when combined with other data from the same user or even other users, it can be used in a wide variety of ways. While I find it beneficial to know how many steps I take in a day or how much time I sleep at night, I am not the only individual or entity with access to that information. The company that owns the device I wear also takes that information and uses it in ways that are beyond my control. Why would a company do that? In many instances, “[t]he data generated by the Internet of Things provides businesses with a wealth of information that—when properly collected, stored, and processed—gives businesses a depth of insight into user behavior never before seen.” Data security and privacy in general are issues that all companies manage as they work to protect the data we provide. Some types of data receive heightened protections, as discussed below, because they are viewed as personal, as private, or as potentially dangerous since unauthorized access to them could cause harm to the user/owner. Some states and countries have taken a step further, focusing not on industry-related data that needs particular types of protection, but in-stead looking at an individual’s overall right to privacy, particularly on the internet. Those protections are summarized below. It makes sense, you might say, to worry about financial or healthcare data remaining private and to not want every website you have ever visited to keep a file of information on you. But why might we care about the use of data in agricultural operations? Depending on who you ask, the answer may be that agricultural data needs no more care or concern than any other type of business data. Some argue that the use of “Big Data” in agriculture provides opportunities for smaller operations and shareholders. These opportunities include increased power in a market driven for many years by the mantra “bigger is better” and increased production of food staples across the world—both in a more environmentally-friendly fashion. While the benefits of technology and Big Data in the agricultural sector unarguably exist, questions remain as to how to best manage data privacy concerns in an industry where there is little specific law or regulation tied to collection, use, and ownership of this valuable agricultural production data. In the following pages, this Article discusses what types of data are currently being gathered in the agricultural sector and how some of that data can and is being used. In addition, it focuses on unique considerations tied to the use of agricultural data and why privacy concerns continue to increase for many producers. As the Article looks at potential solutions to privacy concerns, it summarizes privacy-related legislation that currently exists and ends by looking at whether any of the current privacy-related laws might be used or adapted within the agricultural sector to address potential misuse of agricultural data.


Sign in / Sign up

Export Citation Format

Share Document