scholarly journals Effect of steel fibers over the Self Compacting Concrete

The introduction of self-compacting concrete in the construction industry overcomes the flaws caused due to the improper compaction of concrete. Fibers are proved to increase the properties of conventional concrete. This research focuses on the performance of self-compacting concrete after augmenting steel fibers. The steel fibers are added in proportions such as 0.25 percentage, 0.5 percentage, 0.75 percentage and 1 percentage. After casting the self- compacting concrete, the strength was assessed for 7 days and 28 days and its compressive strength and split tensile strength was analyzed. The inclusion of steel fibers yielded good outcome in the tests and it is proved to yield better engineering properties.

The development of Self-compacting concrete (SCC) is a progressive milestone in the historical backdrop of real estate and construction industry bringing about transcendent use of SCC overall these days .In this study, the effects on the mechanical properties of the Self-compacting concrete (SCC) with partial replacement of cement by grinded fiber were studied, a mixture of equal proportion of grinded glass and basalt fiber of length 6mm was used. The volume fraction of the grinded glass and basalt mixture taken are 0%, 0.15%, 0.30%, 0.45% and 0.60% by weight of cement. In order to better understand the effect of the grinded fibers on the mechanical properties of SCC, cubes and cylinders were casted and tested for compressive strength, split tensile strength and flexural strength. For each test, data was collected and then compared with target (0%) fiber specimen. The study showed remarkable improvements in all properties of self-compacting concrete such as a compressive strength as well as enhanced durability.


2020 ◽  
Vol 170 ◽  
pp. 06018
Author(s):  
Sandeep L. Hake ◽  
S. S. Shinde ◽  
Piyush K. Bhandari ◽  
P. R. Awasarmal ◽  
B. D. Kanawade

Self Compacting Concrete (SCC) is a specially developed concrete for concreting under extreme condition of inaccessibility from heights. It is capable to flow under influence of its own weight. It could be used when encountered with dense reinforcement and complex structural design. Problem of segregation as well as bleeding is eliminated and vibration is not required for compaction. As concrete is strong in compression and weak in tension. Hence to make it strong in tension, discontinuous Anti-Crack high dispersion glass fibers are added. SCC mix prepared with addition of discontinuous glass fibers is called as Glass Fiber reinforced Self Compacting Concrete (GFRSCC). In this paper an experimental study has been carried out to check the effect of Anti-Crack high dispersion glass fibers on the compressive strength, split tensile strength and flexural strength of SCC. The result show that, as compared to the Normal SCC, the compressive strength of GFRSCC increases by 2.80% and 12.42%, the split tensile strength of GFRSCC increases by 4.47% and 25.12% and the flexural strength of SCC increases by 6.57% and 14.34% when the Cem-FIL Anti-Crack HD glass fibers were added as 0.25% and 0.50% respectively by the weight of total cementitious material contents. The addition of 0.25% Cem-FIL Anti-Crack HD glass fibers to SCC has not much affect on the workability of Normal SCC. Whereas, addition of 0.50% Cem-FIL Anti-Crack HD glass fibers reduces the workability of SCC.


The High strength concrete defined as per IS 456 as the concrete having characteristic compressive strength more than 65 MPa. The self-compacting concrete has lot of advantages including concreting at congested reinforcement locations, better finish, good compaction etc. The inclusion of fibers in the concrete mix decreases the brittle nature of concrete thereby the ductility increases. Different types of fibers are available for inclusion in concrete like steel, glass, polypropylene, basalt, etc. In the present investigation, high strength concrete having characteristic strength of 90 MPa was developed and hooked ended steel fibers are used and the hardened properties are determined. Steel fibers having diameter of 1 mm and lengths of 25 and 50 mm were added to concrete in 0.125%, 0.25% and 0.5% by volume of concrete. Three hardened properties compressive strength, split tensile Strength and flexural strength were determined. Out of the two lengths of fiber i.e with two aspect ratios, the fiber with 50 mm length yielded better results.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 437
Author(s):  
V R.Prasath Kumar ◽  
K Gunasekaran ◽  
Sreerag K P

High standing estimation of building materials utilized for development is a component of incredible concern. Coconut shell as a completely substitution in the place of coarse aggregate may totally effective for designers in construction industry. The coconut shell concrete is a light weight solid which may decrease the self-heap of a structure. The under taken project depends on inspecting attributes of coconut shell concrete when contrasted with conventional concrete. Coconut shells going from 10mm strainer and held on 6.3mm were considered to utilize for this study. For the current study M100 grade concrete is used to cast the specimens. The principle properties considered testing on coconut shell concrete and conventional concrete is compressive strength, split tensile strength and flexural strength. Examples were taken by supplanting coarse aggregate with coconut shells completely and cement is supplanted by silica fume with various extents of 5%, 10%, 15%, 20%, 25% for compressive strength test and tests were done at 3, 7, 28, 56 and 90 days of curing, it is observed that the ideal compressive strength outcomes were obtained at 10% of silica fume. The flexural strength and  split tensile strength of the specimens are calculated with replacement of cement by silica fume with  different extents of 0%, 5%, 10% and 15%, tests were done at 3, 7 and 28 days of curing. The optimum replacement percentage of cement by silica fume is 10% for compressive strength, split tensile and flexural strength. The primary principle is to lessen the utilization of natural aggregate by supplanting them with coconut shells and to decrease the density of concrete which makes concrete for simple dealing.  


2020 ◽  
Vol 299 ◽  
pp. 112-117
Author(s):  
Margarita A. Goncharova ◽  
Vladimir V. Krokhotin ◽  
Alexander N. Ivashkin

The paper considers the influence of fiberglass on the rheological and stress-strain properties of self-compacting concretes. The use of fiberglass in self-compacting concrete compositions makes it possible to achieve a sufficient coefficient of grain separation in coarse and fine fillers, which significantly influences the mobility and technological effectiveness of self-compacting mixes. Optimum compositions of self-compacting concretes are obtained, rational volumes of the hyper-plasticizing additive and of fiberglass are determined. The components were selected experimentally, in order to optimize the composition according to rheological characteristics. It is established that the use of fiberglass positively influences the stress-strain characteristics of concrete: it raises the compressive strength, as well as the bending tensile strength without deteriorating the workability and spreadabilityof the self-compacting concrete mix.


In this investigation, conventional concrete was made with replacing the sand by 80 % of M-sand and the cement by fillet material silica fume in varying percentages say 5%, 10 % , and 15%, to study the compressive strength, split tensile strength and flexural strength. In order to the maximum strength was attained at 10% of silica fume. The result showed that by increasing the silica fume content, the strength of the M-sand concrete was decreased because higher fineness of silica fume content decreases the strength of the M-sand concrete. Secondly polymer concrete with unsaturated polyester resin with hardener MEKP, Cobalt as the accelerator and silica fume in varying percentages say 0%, 5% and 10% was made to study the compressive strength and split tensile strength of polymer concrete. In improved silica fume content the strength was high. Polymer concrete improved the mechanical properties. Polymer concrete system was mainly useful to fill the micro voids. In this research, the maximum strength was attained at 5% of silica fume filler added with polymer concrete. Thus the high strength of the concrete was obtained due to the pozzolanic reaction with the silica fume.


The study of strength behaviour of M20 grade concrete, by exchanging the cement partly by powder of egg shell, for which an experimental tests were carried out and the effect of egg shell powder (0%,5%.10%,15%) on compressive strength characteristics were studied. The result of this present investigation shows that the replacement of 5% of cement with egg shell powder attains the maximum compressive strength. The best and economical percentage exchange of replacement of powder of egg shell (ESP) with cement is about 5% and also reduces the cost of concrete with the use of powder of egg shell, which is available freely as raw material and then it is grinded well to make powder. The egg shell is available from municipal solid waste and is mixed in powder form in concrete by exchanging the cement and is found that 5% replacement is very effective in the improvement of strength properties when compared to the conventional concrete. Also the exchangement of 5% ESP in cement gives higher split tensile strength as compared to other cement ingredient mixtures. In this study, it is fixed that 0.45 is the w/c ratio and it produces medium degree of workability which is suitable for most of the concrete mixtures on site. The addition of eggshell powder as filler in concrete has improved the strength of concrete and also improved and better split tensile strength.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 255 ◽  
Author(s):  
K Manju ◽  
B Dhanush Kumar ◽  
S Suresh Kumar ◽  
S Nirmal Kumar

Natural aggregate is not an environmental friendly material due to its destructive resource consuming nature. GGBS is a byproduct of steel industries, whereas GGBFS mixed with cement of 1:2 ratio making an artificial aggregate, whereas hardening powder used to spray made upon artificial aggregate to develop the strength of concrete. The basic properties of natural and artificial aggregates were determined. The mix design to be determined obtained for conventional concrete of control mix of grade M 25. The different mix proportions were prepared by replacement of 20, 40, 60, 80, 100 of natural aggregate instead of artificial aggregate. To check the compressive strength, split tensile strength determine. Based on the result we choose optimum percentage of aggregate and make it and concrete to determine the durability properties of concrete compared with natural aggregate.  


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1120 ◽  
Author(s):  
Mahmoud Nili ◽  
Hossein Sasanipour ◽  
Farhad Aslani

Today, the use of recycled aggregates as a substitute for a part of the natural aggregates in concrete production is increasing. This approach is essential because the resources for natural aggregates are decreasing in the world. In the present study, the effects of recycled concrete aggregates as a partial replacement for fine (by 50%) and coarse aggregates (by 100%) were examined in the self-compacting concrete mixtures which contain air-entraining agents and silica fumes. Two series of self-compacting concrete mixes have been prepared. In the first series, fine and coarse recycled mixtures respectively with 50% and 100% replacement with air entraining agent were used. In the second series, fine recycled (with 50% replacement) and coarse recycled (with 100% replacement) were used with silica fume. The rheological properties of the self-compacting concrete (SCC) were determined using slump-flow and J-ring tests. The tests of compressive strength, tensile strength, and compressive stress-strain behavior were performed on both series. The results indicated that air-entraining agent and silica fume have an important role in stabilization of fresh properties of the mixtures. The results of tests indicated a decrease in compressive strength, modulus of elasticity, and energy absorption of concrete mixtures containing air entrained agent. Also, the results showed that complete replacement (100%) with coarse recycled material had no significant effect on mechanical strength, while replacement with 50% fine recycled material has reduced compressive strength, tensile strength, and energy absorption.


Sign in / Sign up

Export Citation Format

Share Document