scholarly journals Healthy Fruits Image Label Categorization through Color Shape and Texture Features Based on Machine Learning Algorithm

The fruit categorization according to their visual quality has recently experienced tremendous growth in the field of agriculture and food products. Due to post-harvest loses during handling and processing, there is an increasing demand for quality products in agro industry which requires accuracy to predict the fruit. Various techniques of machine learning have been successfully applied for classifying the fruit built on binary class. In this paper, machine leaning technique is used to automate the process of categorization and to improve the accuracy of different types of fruits by feature selection. To categorized images domain specific features such as color, shape and textual features are considered. Statistical color features are extracted from the image, bounding box feature for shape features and gray-level co-occurrence matrix (GLCM) is used to extract the textual feature of an image. These features are combined in a single feature fusion. A support vector machine (SVM) classification model is trained using training set features on fruit360 dataset which includes six fruit categories (classes) with two sub category (sub-classes) which builds multiclass classification task. We present one-vs-one coding design of Error correcting output codes (ECOC) and apply to SVM classifier; validation followed a fivefold cross validation strategy. The result shows that the textual features combined with color and shape feature improved fruit classification accuracy.

Author(s):  
Pedro Pedrosa Rebouças Filho ◽  
Suane Pires Pinheiro Da Silva ◽  
Jefferson Silva Almeida ◽  
Elene Firmeza Ohata ◽  
Shara Shami Araujo Alves ◽  
...  

Chronic kidney diseases cause over a million deaths worldwide every year. One of the techniques used to diagnose the diseases is renal scintigraphy. However, the way that is processed can vary depending on hospitals and doctors, compromising the reproducibility of the method. In this context, we propose an approach to process the exam using computer vision and machine learning to classify the stage of chronic kidney disease. An analysis of different features extraction methods, such as Gray-Level Co-occurrence Matrix, Structural Co-occurrence Matrix, Local Binary Patters (LBP), Hu's Moments and Zernike's Moments in combination with machine learning methods, such as Bayes, Multi-layer Perceptron, k-Nearest Neighbors, Random Forest and Support Vector Machines (SVM), was performed. The best result was obtained by combining LBP feature extractor with SVM classifier. This combination achieved accuracy of 92.00% and F1-score of 91.00%, indicating that the proposed method is adequate to classify chronic kidney disease in two stages, being a high risk of developing end-stage renal failure and other outcomes, and otherwise.


2021 ◽  
Vol 36 (1) ◽  
pp. 721-726
Author(s):  
S. Mahesh ◽  
Dr.G. Ramkumar

Aim: Machine learning algorithm plays a vital role in various biometric applications due to its admirable result in detection, recognition and classification. The main objective of this work is to perform comparative analysis on two different machine learning algorithms to recognize the person from low resolution images with high accuracy. Materials & Methods: AlexNet Convolutional Neural Network (ACNN) and Support Vector Machine (SVM) classifiers are implemented to recognize the face in a low resolution image dataset with 20 samples each. Results: Simulation result shows that ACNN achieves a significant recognition rate with 98% accuracy over SVM (89%). Attained significant accuracy ratio (p=0.002) in SPSS statistical analysis as well. Conclusion: For the considered low resolution images ACNN classifier provides better accuracy than SVM Classifier.


Author(s):  
Xiaoming Li ◽  
Yan Sun ◽  
Qiang Zhang

In this paper, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization (vertical-horizontal, VH or horizontal-vertical, HV) data in extra wide (EW) swath mode based on the machine learning algorithm support vector machine (SVM). The classification basis includes the S1 radar backscatter coefficients and texture features that are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e. entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparison shows good agreement between the SAR-derived sea ice cover using the proposed method and a visual inspection, of which the accuracy reaches approximately 90% - 95% based on a few cases. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of extracted sea ice cover by using S1 data is more than 80%.


2022 ◽  
Vol 65 (1) ◽  
pp. 75-86
Author(s):  
Parth C. Upadhyay ◽  
John A. Lory ◽  
Guilherme N. DeSouza ◽  
Timotius A. P. Lagaunne ◽  
Christine M. Spinka

HighlightsA machine learning framework estimated residue cover in RGB images taken at three resolutions from 88 locations.The best results primarily used texture features, the RFE-SVM feature selection method, and the SVM classifier.Accounting for shadows and plants plus modifying and optimizing the texture features may improve performance.An automated system developed using machine learning is a viable strategy to estimate residue cover from RGB images obtained with handheld or UAV platforms.Abstract. Maintaining plant residue on the soil surface contributes to sustainable cultivation of arable land. Applying machine learning methods to RGB images of residue could overcome the subjectivity of manual methods. The objectives of this study were to use supervised machine learning while identifying the best feature selection method, the best classifier, and the most effective image feature types for classifying residue levels in RGB imagery. Imagery was collected from 88 locations in 40 row-crop fields in five Missouri counties between early May and late June in 2018 and 2019 using a tripod-mounted camera (0.014 cm pixel-1 ground sampling distance, GSD) and an unmanned aerial vehicle (UAV, 0.05 and 0.14 GSD). At each field location, 50 contiguous 0.3 × 0.2 m region of interest (ROI) images were extracted from the imagery, resulting in a dataset of 4,400 ROI images at each GSD. Residue percentages for ground truth were estimated using a bullseye grid method (n = 100 points) based on the 0.014 GSD images. Representative color, texture, and shape features were extracted and evaluated using four feature selection methods and two classifiers. Recursive feature elimination using support vector machine (RFE-SVM) was the best feature selection method, and the SVM classifier performed best for classifying the amount of residue as a three-class problem. The best features for this application were associated with texture, with local binary pattern (LBP) features being the most prevalent for all three GSDs. Shape features were irrelevant. The three residue classes were correctly identified with 88%, 84%, and 81% 10-fold cross-validation scores for the 2018 training data and 81%, 69%, and 65% accuracy for the 2019 testing data in decreasing resolution order. Converting image-wise data (0.014 GSD) to location residue estimates using a Bayesian model showed good agreement with the location-based ground truth (r2 = 0.90). This initial assessment documents the use of RGB images to match other methods of estimating residue, with potential to replace or be used as a quality control for line-transect assessments. Keywords: Feature selection, Soil erosion, Support vector machine, Texture features, Unmanned aerial vehicle.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yawen Liu ◽  
Haijun Niu ◽  
Jianming Zhu ◽  
Pengfei Zhao ◽  
Hongxia Yin ◽  
...  

According to previous studies, many neuroanatomical alterations have been detected in patients with tinnitus. However, the results of these studies have been inconsistent. The objective of this study was to explore the cortical/subcortical morphological neuroimaging biomarkers that may characterize idiopathic tinnitus using machine learning methods. Forty-six patients with idiopathic tinnitus and fifty-six healthy subjects were included in this study. For each subject, the gray matter volume of 61 brain regions was extracted as an original feature pool. From this feature pool, a hybrid feature selection algorithm combining the F-score and sequential forward floating selection (SFFS) methods was performed to select features. Then, the selected features were used to train a support vector machine (SVM) model. The area under the curve (AUC) and accuracy were used to assess the performance of the classification model. As a result, a combination of 13 cortical/subcortical brain regions was found to have the highest classification accuracy for effectively differentiating patients with tinnitus from healthy subjects. These brain regions include the bilateral hypothalamus, right insula, bilateral superior temporal gyrus, left rostral middle frontal gyrus, bilateral inferior temporal gyrus, right inferior parietal lobule, right transverse temporal gyrus, right middle temporal gyrus, right cingulate gyrus, and left superior frontal gyrus. The accuracy in the training and test datasets was 80.49% and 80.00%, respectively, and the AUC was 0.8586. To the best of our knowledge, this is the first study to elucidate brain morphological changes in patients with tinnitus by applying an SVM classifier. This study provides validated cortical/subcortical morphological neuroimaging biomarkers to differentiate patients with tinnitus from healthy subjects and contributes to the understanding of neuroanatomical alterations in patients with tinnitus.


Author(s):  
Ravita Chahar ◽  
Deepinder Kaur

In this paper machine learning algorithms have been discussed and analyzed. It has been discussed considering computational aspects in different domains. These algorithms have the capability of building mathematical and analytical model. These models may be helpful in the decision-making process. This paper elaborates the computational analysis in three different ways. The background and analytical aspect have been presented with the learning application in the first phase. In the second phase detail literature has been explored along with the pros and cons of the applied techniques in different domains. Based on the literatures, gap identification and the limitations have been discussed and highlighted in the third phase. Finally, computational analysis has been presented along with the machine learning results in terms of accuracy. The results mainly focus on the exploratory data analysis, domain applicability and the predictive problems. Our systematic analysis shows that the applicability of machine learning is wide and the results may be improved based on these algorithms. It is also inferred from the literature analysis that at the applicability of machine learning algorithm has the capability in the performance improvement. The main methods discussed here are classification and regression trees (CART), logistic regression, naïve Bayes (NB), k-nearest neighbors (KNN), support vector machine (SVM) and decision tree (DT). The domain covered mainly are disease detection, business intelligence, industry automation and sentiment analysis.


2021 ◽  
pp. 089198872199355
Author(s):  
Anastasia Bougea ◽  
Efthymia Efthymiopoulou ◽  
Ioanna Spanou ◽  
Panagiotis Zikos

Objective: Our aim was to develop a machine learning algorithm based only on non-invasively clinic collectable predictors, for the accurate diagnosis of these disorders. Methods: This is an ongoing prospective cohort study ( ClinicalTrials.gov identifier NCT number NCT04448340) of 78 PDD and 62 DLB subjects whose diagnostic follow-up is available for at least 3 years after the baseline assessment. We used predictors such as clinico-demographic characteristics, 6 neuropsychological tests (mini mental, PD Cognitive Rating Scale, Brief Visuospatial Memory test, Symbol digit written, Wechsler adult intelligence scale, trail making A and B). We investigated logistic regression, K-Nearest Neighbors (K-NNs) Support Vector Machine (SVM), Naïve Bayes classifier, and Ensemble Model for their ability to predict successfully PDD or DLB diagnosis. Results: The K-NN classification model had an accuracy 91.2% of overall cases based on 15 best clinical and cognitive scores achieving 96.42% sensitivity and 81% specificity on discriminating between DLB and PDD. The binomial logistic regression classification model achieved an accuracy of 87.5% based on 15 best features, showing 93.93% sensitivity and 87% specificity. The SVM classification model had an accuracy 84.6% of overall cases based on 15 best features achieving 90.62% sensitivity and 78.58% specificity. A model created on Naïve Bayes classification had 82.05% accuracy, 93.10% sensitivity and 74.41% specificity. Finally, an Ensemble model, synthesized by the individual ones, achieved 89.74% accuracy, 93.75% sensitivity and 85.73% specificity. Conclusion: Machine learning method predicted with high accuracy, sensitivity and specificity PDD or DLB diagnosis based on non-invasively and easily in-the-clinic and neuropsychological tests.


Author(s):  
Intisar Shadeed Al-Mejibli ◽  
Jwan K. Alwan ◽  
Dhafar Hamed Abd

Currently, the support vector machine (SVM) regarded as one of supervised machine learning algorithm that provides analysis of data for classification and regression. This technique is implemented in many fields such as bioinformatics, face recognition, text and hypertext categorization, generalized predictive control and many other different areas. The performance of SVM is affected by some parameters, which are used in the training phase, and the settings of parameters can have a profound impact on the resulting engine’s implementation. This paper investigated the SVM performance based on value of gamma parameter with used kernels. It studied the impact of gamma value on (SVM) efficiency classifier using different kernels on various datasets descriptions. SVM classifier has been implemented by using Python. The kernel functions that have been investigated are polynomials, radial based function (RBF) and sigmoid. UC irvine machine learning repository is the source of all the used datasets. Generally, the results show uneven effect on the classification accuracy of three kernels on used datasets. The changing of the gamma value taking on consideration the used dataset influences polynomial and sigmoid kernels. While the performance of RBF kernel function is more stable with different values of gamma as its accuracy is slightly changed.


2018 ◽  
Vol 27 (03n04) ◽  
pp. 1840026
Author(s):  
Binlin Wu ◽  
Xin Gao ◽  
Jason Smith

Native fluorescence spectra are acquired from fresh normal and cancerous human prostate tissues. The fluorescence data are analyzed using an unsupervised machine learning algorithm such as non-negative matrix factorization. The nonnegative spectral components are retrieved and attributed to the native fluorophores such as collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) in tissue. The retrieved scores of the components are used to estimate the relative concentrations of the native fluorophores such as NADH and FAD and the redox ratio. A supervised machine learning algorithm such as support vector machine (SVM) is used to classify normal and cancerous tissue samples based on either the relative concentrations of NADH and FAD or the redox ratio alone. Various statistical measures such as sensitivity, specificity, and accuracy, along with the area under receiver operating characteristic (ROC) curve are used to show the classification performance. A cross validation method such as leave-one-out is used to further evaluate the predictive performance of the SVM classifier to avoid bias due to overfitting, and the accuracy was found to be 93.3%.


2021 ◽  
Vol 13 (2) ◽  
pp. 27-39
Author(s):  
Upendra Kumar ◽  
Shashank Yadav ◽  
Esha Tripathi

Automated plant recognition performs a significant role in various applications used by environmental experts, chemists, and botany experts. Humans can recognize plants manually, but it is a prolonged and low-efficiency process. This paper introduces an automated system for recognizing plant species based on leaf images. A hybrid texture and colour-based feature extraction method was applied on digital leaf images to produce robust feature, and a further classification model was developed. A combination of machine learning methods, such as SVM (support vector machine), KNN (k-nearest neighbours), and ANN (artificial neural network), was applied on dataset for plant classification. This dataset contains 32 types of leaves. The outcomes of this work proved that success rate of plant recognition can be enhanced up to 94% with ANN classifier when both shape and colour features are utilized. Automatic recognition of plants is useful for medicine, foodstuff, and reduction of chemical wastage during crop spraying. It is also useful for identification and preservation of species.


Sign in / Sign up

Export Citation Format

Share Document