scholarly journals Utilization of Waste Rubber Tyres as an Ingredient in Concrete Mixes.

Improvements in materials used for construction have an important impact on the Construction industry. Therefore many efforts have been made in the construction industry to put to use waste material products, e.g., worn-out tyres, into useful and Economical items. If this is achieved successfully it will contribute to the reduced quantity of waste material dumping problems by effective use of these waste materials in the building sector. The present research will concentrate on how to effectively put to use the rubber waste tyres in construction industry so as to reduce their impact on our precious environment and also using them effectively in the construction process. It will involve comprehensive laboratory tests on fresh and hardened rubberized concrete in order to study its strength behavior i.e. compressive and flexure strength, and its impact resistance with different volume of rubber in crumb state (fine aggregate). Volume variation of crumb rubber. The proposed research work will study the effect of volume variation of crumb rubber on the compressive strength, flexural strength, split tensile strength & workability in terms of Slump in mm of the concrete.

2019 ◽  
Vol 8 (2) ◽  
pp. 5761-5765

With an objective of saving the environment by providing crumb rubber as an alternative to natural fine aggregate this paper presents a study carried out to find the mechanical properties of rubberized concrete. Rubberized concrete is made up of waste rubber from vehicle tyres and other rubber waste which otherwise is left out polluting the environment. In this paper, 7.5% of crumb rubber (obtained by shredding the vehicle tyres) as an alternative to fine aggregate and 7.5% of fly-ash as an alternative to cement is added with other ingredients of concrete to produce an eco-friendly concrete which can be used economically and effectively for construction along the coastal areas. Various properties like workability, compressive strength, split tensile strength, and flexural strength was carried out on concrete specimens exposed to the natural marine environment along the coast of Visakhapatnam, Andhra Pradesh. The total exposure of concrete specimen was about 150 days, and various specimens were tested at 7, 28, 90, 120 and 150 days, respectively. The test results showed that with a slight compromise in strength, the workability of concrete and resistance to the effect of seawater on the strength of concrete significantly improved with the addition of crumb rubber and fly-ash.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.


2018 ◽  
Vol 7 (2) ◽  
pp. 1-6
Author(s):  
Bikram Paul ◽  
Kushal Ghosh

Abstract – Sustainability and Unavailability play an important role while we choose material for manufacturing of concrete. Nowadays, both Central and State Govt. have taken legal action on the extraction of sand from the river bed due to the bad impacts on the river like changes the shape, slope of the bed and also in the channel morphology. Due to the implementation of this type of law, legal sand quarries did not able to make balance with the rapid growth of the construction industry. That’s why, to make profit and supply extra needs of sand to the concrete industry “Sand Mafias” involved into the illegal trades of the sand. To counteract these sorts of socio-economic problems, we have to go for an alternative fine aggregate. Though it may not be possible to replace fully, we have to concentrate on the sand being replaced by the high percentage of alternative fine aggregate. Stone dust is a by-product from rock crusher and it can be recycled by using it in the concrete and maintained the sustainability. As stone dust has acceptable properties of fine aggregate sand with regard to shape and texture, it can be thought of as an alternate fine aggregate but research is needed on the extent of sand replacement by stone dust. The present study is done keeping in mind the use of stone dust as high as possible. That’s why two Design Mix have been designed M20 and M25. For M20 grade of concrete sand has been replaced by stone dust 25%, 30% and 35% by volume and the basic strength properties of concrete have been investigated for the above replacements like compressive strength, flexural strength, split tensile strength etc. In case of M25 grade of concrete 30%, 40% and 50% replacement of sand have been done and variation cement content and water-cement ratio has been done by comparing the target mean strength of M25 grade of concrete.


2019 ◽  
Vol 1 (6) ◽  
pp. 537-542
Author(s):  
Anukarthuika B ◽  
Priyanka S ◽  
Preethika K

Concrete plays important role in the construction of structures. The need for concrete increases day by day. Material required for concrete are getting depleted, so there is a requirement to find alternatives. At the same time the alternative materials should posses the property of the actual materials used in concrete and also they must provide the required strength to the concrete. Normally Concrete is firm in compression but anemic in tension and shear. The purpose of this study is to find the behaviour of concrete reinforced with hybrid macro fibers. By adding Glass fibers in percentages like 0.2%, 0.4%, 0.6%& 0.8% to the concrete, the properties like compressive, flexural and split tensile strength are investigated. The optimum percentage of glass fiber was found to be 0.4%. Quarry dust has been widely used in structures since ancient times. The present study is aimed at utilizing waste Quarry dust (WQD) in construction industry itself as fine aggregate in concrete, replacing natural sand and also by adding the optimum percentage of glass fibers. The replacement is done partially and fully in the various proportions like 0%, 25%, 50%, 75% and 100% and its effect on properties of concrete were investigated. The optimum percentage of the concrete by adding 0.4% of glass fiber and the proportions was found to be 25%.


Author(s):  
Kishor Kumar B. R ◽  
Kishor Kumar B. R ◽  
Kishor Kumar B. R ◽  
Kishor Kumar B. R

In this research work, an attempt is being made to partially replace the natural fine aggregate with sea sand and recycled fine aggregate obtained from demolished concrete waste in varied proportions to concrete mix and subject the specimens to mechanical strength tests for short and long durations of 7, 28, 56 and 90 days curing. The compressive strength, split tensile strength and flexural strength results of 30% mix proportion (15% Sea sand + 15% demolished waste sand) were found to be 58.3 N/mm2, 3.53 N/mm2 and 4.71N/mm2 respectively. All the three strength test results obtained were found to yield 15% higher strength than the control specimens. Finally, it can be concluded that partial replacement of natural fine aggregate by sea sand and demolition recycled fine aggregate in construction industry, not only eliminates the waste management problems and impacts on environment, but also leads to the sustainable development by reducing the consumption of natural resources.


2021 ◽  
Vol 882 ◽  
pp. 228-236
Author(s):  
Anamika Agnihotri ◽  
Ajay Singh Jethoo ◽  
P.V. Ramana

The mechanical and durability properties were best at 45% GGBS and 5% Waste Glass with 0.4 water/cement ratio. The recycled materials implemented for mix proportion were waste glass provided considerably to enhance its properties when added with GGBS. In most of the research work, the effect of WG and GGBS in concrete as a partial substitution of fine aggregate and cement individually is analyzed. Previous studies only show the individual impact of these concrete recycled materials on mechanical and durability properties. In the present study, an exact optimum substitution level of cement by GGBS (15 – 60% at an increment of 15%) and fine aggregate by the waste glass (5 – 20% at an increase of 5%) combined for OPC concrete mix. Mechanical (compressive strength, split tensile strength and flexural strength) and microstructural properties (FESEM) were observed on the combination of waste glass and GGBS concrete mix.


lot of work within the field of normal mix concrete and Scc has been done in the last two decades. Utilization of different waste material from the different industries as the partial replacement of cement as well as aggregates both fine and coarse has been considered in the research work by different researchers as per their area of interest. No doubt use of Iron Slag has been in trend but only cement replacement is done with it. Research work in the replacing of Fine aggregate with iron slag in SCC has not been studied in detail. An aim was set to study the hardened properties and fresh properties of iron slag based HSSCC. Mix design of M60 grade of high strength selfcompacting concrete is done as per EFNARC guidelines. Testing of rheological properties of HSSCC with U- Box, Slump Flow, LFunnel, V- Box, apparatus were done. Testing of hardened properties of HSSCC for Split Tensile Strength, flexural strength, compressive strengthas per Indian standard guidelines. Replacement of Fine aggregate (20, 30, and 40%) was done with iron slag and further addition of Alccofine and super plasticizer was done.


Concrete is a extensively used material in construction. Due to high tech upgrading, the concrete have been matured to augment the equity of concrete. Now a day’s various studies have been conducted to make concrete with waste materials with the intension of reducing cost and demand of materials. This paper investigates the mechanical goods of concrete using Ground Granulated Blast furnace Slag (GGBS) and Marble Dust (MD) as a limited replacement of cement and fine aggregate respectively. Based on previous literature survey, 40% of GGBS and 10, 20 and 30% of MD are taken for the present study. The present research work is aimed at studying the mechanical properties of M20 grade concrete using GGBS and MD. Compressive strength and Split tensile strength were carried out for 7, 28 and 56 days and insignificant increases in the strength were observed for concrete specimens admixed with GGBS and MD when compared with conventional concrete


Due to increased construction practices there was a very high demand in consumption of raw materials that are to be used in concrete. In the raw materials, sand is one of the major construction materials that is consumed adequately. It’s presence will be vanished due to excessive digging .The effect will be to the nearby localities .As well the stability hydraulic structures nearby river banks will be affected with this. To reduce digging practices the fine aggregate was partially replaced with waste crushed glass in 0%,10%,20%,30% andv40% along with 0.25%Super plasticizer SP 430 to achieve workability. The crushed glass is non-biodegradable and cannot be disposed off, also causes several environmental effects. By utilizing this waste as a useful material in the form as replacing material of fine aggregate we can reduce the waste content and in the same way it can be used as a resource. In order to check the concrete strength and durability tests like Compressive strength test, Split tensile strength test, Flexural strength test for 7,14,28 days curing and acid attack test, rapid chloride permeability test, Abrasion tests were conducted. SEM tests are also conducted on concrete with replaced fine aggregate. The current research work describes the proper utilization of waste crushed glass as a useful construction material.


Author(s):  
C. Mounika

Abstract: The main aim of this project is to evaluate mechanical properties of interlocking bricks using coir fiber powder as a substitute of cement and rubber tire waste as a substitute of fine aggregate (sand) with varying percentages of 0%, 1%, 2% & 3% and 0%, 5%, 10% & 15% in concrete and to help in solving environmental problem produced from disposing of waste tires and coir husk partially. Additionally fly ash was also added with varying percentages of 5%, 10% and 15% as a substitute to cement in a concrete mix. Several laboratory tests such as compressive strength test, flexural strength test, split tensile strength test, water absorption test and density of concrete etc., were conducted on hardened concrete specimen to achieve the optimum usage of crumb rubber tire waste and coir fiber powder in mix proportion of concrete. It is found that the maximum compressive strength value of coir fiber based crumb rubber interlocking brick was obtained at 1%CF + 5%FA + 5%CR, flexural strength value and split tensile strength value of coir fiber based crumb rubber concrete block was obtained at 1%CF + 5%FA + 5%CR. From the final conclusion or outcome of the project, optimum usage of coir fiber powder is 3% and crumb rubber is 5%. Keywords: coir fiber powder, crumb rubber tire waste, mechanical properties, interlocking bricks & optimum usage.


Sign in / Sign up

Export Citation Format

Share Document