scholarly journals High Octane Number Gasoline-Ether Blend

Gasoline produced in Egypt is a low-grade gasoline that contains high concentration of harmful components that are having a toll on our environment. In addition, those pollutants cause countless diseases and deaths annually to the Egyptian population. This paper targets two main sectors in the production of commercial gasoline. The improvement engine efficiency through the upgrading of octane number is first experimented by using a blendstock that ranges from gasoline fractions and Isomerates. An optimum was then chosen depending on the results obtained from different tests. Through those experiments, it was determined which samples obeyed the EU regulation for transportation emissions. Having an excellent gasoline with a high octane number but produced large quantities of harmful emissions was unacceptable. This leads to the section aim of this research, which was to produce an environmental gasoline. This meant that once the gasoline sample is combusted, it should produce limited amounts of emissions such as 1% benzene since benzene is carcinogenic. A sample with euro 3 specification was produced and showed excellent gasoline properties such as an RON value of around 95 without the use of octane enhancers. A second sample showed better results satisfied euro 5 regulations and produced an even higher octane number than the euro 3 sample. This sample was the optimum environmental ETBE-gasoline high octane number blend. By understanding the composition of those samples, maximum yield of commercial gasoline could be produced. This would also lead to the reduction of pollutants in the environment. Completing this task with successful results means that this environmental high octane number gasoline could be produced and used in Egypt. Such blends should be produced on a large scale by exercising euro 3 and/or 5 regulations.

2017 ◽  
Vol 10 (1) ◽  
pp. 79-94
Author(s):  
Wayne Seames ◽  
Malhar Khambete ◽  
Nahid Khatibi ◽  
Shelby Amsley-Benzie ◽  
Evguenii Kozliak ◽  
...  

Background: The replacement of leaded high octane aviation gasoline with an unleaded renewable alternative would decrease the emissions of lead and fossil-derived carbon into the atmosphere. Replacement has been limited by the requirement of a very high octane number in many existing general aviation aircraft engines. Method: Two separate process pathways were developed that generate an unleaded octane fuel with a motor octane number >96 from triglyceride oils (TGs), such as crop oils and algae oil. A series of experiments coupled with process simulations was used to verify the feasibility of both pathways and to provide preliminary laboratory scale data that could form the basis for further development towards a commercial technology. In the first pathway, TG oil is catalytically cracked to produce a high concentration of simple aromatic hydrocarbons. These aromatic hydrocarbons are then alkylated using propylene to form a mixture, which after purification acquires fuel properties compliant with those in the ASTM specification for 100 octane low lead aviation gasoline (100LL AvGas). In the second process pathway, the aromatic hydrocarbons are isolated after cracking using a sulfolane solvent extraction process to increase alkylation efficiency and fuel quality. Result: The results demonstrate that it is technically feasible to produce a replacement for 100LL AvGas using either pathway, and thus these strategies may be attractive candidates for commercialization.


2013 ◽  
Vol 773 ◽  
pp. 283-288
Author(s):  
Xing Zou ◽  
Xiang Quan Chen ◽  
Hai Chao Xie ◽  
Xiao Dan Qiu

The manganese sulfate solution leached from low-grade pyrolusite with pyrite and H2SO4 contains heavy metal ions of high concentration, influencing the quality of the final products of manganese compounds and causing manganese ions not to be electrolyzed. The present study was focused on the separation of Co, Ni and Zn ions from the leached solution with BaS. By controlling the pH value at 5.0-6.5, temperature at 50-60°C, reaction time at 15 min and mixing velocity at 78 rpm, the heavy metal ions could be separated effectively. Under the above optimized conditions, the ion concentration of Co, Ni, and Zn in the solution was reduced to 0.06 mg.L-1, 0.27mg.L-1 and 0.01mg.L-1, and the separation efficiency was 99.72%, 99.18% and 99.9% respectively. The obtained pure solution meets the demands of manganese electrowinning.


2001 ◽  
Vol 44 (6) ◽  
pp. 141-147 ◽  
Author(s):  
R. Saravanane ◽  
D. V.S. Murthy ◽  
K. Krishnaiah

Starch manufacturing industrial units, such as sago mills, both at medium and large scale, suffer from inadequate treatment and disposal problems due to high concentration of suspended solid content present in the effluent. In order to investigate the viability of treatment of sago effluent, a laboratory scale study was conducted. The treatment of sago effluent was studied in a continuous flow anaerobic fluidized bed reactor. The start-up of the reactor was carried out using a mixture of digested supernatant sewage sludge and cow dung slurry in different proportions. The effect of operating variables such as COD of the effluent, bed expansion, minimum fluidization velocity on efficiency of treatment and recovery of biogas was investigated. The treated wastewater was analysed for recycling and reuse to ensure an alternative for sustainable water resourse management. The maximum efficiency of treatment was found to be 82% and the nitrogen enriched digested sludge was recommended for agricultural use.


Author(s):  
Jian Song ◽  
Chun-wei Gu

Energy shortage and environmental deterioration are two crucial issues that the developing world has to face. In order to solve these problems, conversion of low grade energy is attracting broad attention. Among all of the existing technologies, Organic Rankine Cycle (ORC) has been proven to be one of the most effective methods for the utilization of low grade heat sources. Turbine is a key component in ORC system and it plays an important role in system performance. Traditional turbine expanders, the axial flow turbine and the radial inflow turbine are typically selected in large scale ORC systems. However, in small and micro scale systems, traditional turbine expanders are not suitable due to large flow loss and high rotation speed. In this case, Tesla turbine allows a low-cost and reliable design for the organic expander that could be an attractive option for small scale ORC systems. A 1-D model of Tesla turbine is presented in this paper, which mainly focuses on the flow characteristics and the momentum transfer. This study improves the 1-D model, taking the nozzle limit expansion ratio into consideration, which is related to the installation angle of the nozzle and the specific heat ratio of the working fluid. The improved model is used to analyze Tesla turbine performance and predict turbine efficiency. Thermodynamic analysis is conducted for a small scale ORC system. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhongben Tang ◽  
Feng Lin ◽  
Jiarong Xiao ◽  
Xiaojun Du ◽  
Jian Zhang ◽  
...  

Primary pulmonary adenoid cystic carcinomas are salivary tumors that are low-grade malignant and prone to recurrence and metastasis. Surgery is currently the main treatment, but there is no standard with regard to postoperative adjuvant therapy. Adenoid cystic carcinoma is more sensitive to radiotherapy and patients benefit less from chemotherapy, but few studies have focused on targeted therapy, and their conclusions are inconsistent. With respect to primary pulmonary adenoid cystic carcinoma, large-scale studies cannot be conducted due to its low incidence, and studies on the targeted therapy of it are very scarce. A few case reports indicate that targeted therapy can be effective however, suggesting that it may be a good option. The current report is the first on the occurrence of human epidermal growth factor receptor 2 amplification in pulmonary adenoid cystic carcinoma. The patient was treated with pyrotinib for 6 months and achieved stable disease.


Author(s):  
Hao Liang ◽  
Weiding Long ◽  
Yingqian Song ◽  
Fang Liu

The energy-Internet is a new energy supply method based on urban compact and densely populated community in a low-carbon city. The principle is to connect small energy generation stations and combined heat and power system (CHP) based on distributed energy technology and renewable energy into a network in the urban district. In this way, the cooling, heating and electricity could all back each other up. Each building of the community could collect the energy and then put that energy into the energy-internet to supply the heating and power to buildings. The power in the energy-internet could also be used for charging electric vehicles. So the energy use in the urban community would be basically self-sufficient. The energy generation stations in the energy-internet could be solar power, wind power, biomass cogeneration (including refuse power generation), household fuel cell, low-grade heat in rivers, lakes, urban sewage and soil. In this way, large-scale renewable energy and unused energy could be fully used and applied in a compact and dense community. If the energy-internet is suitable designed, the equipment capacity, energy consumption and CO2 emission of the community could be greatly reduced, energy efficiency could be optimized and improved and the heat island effect could also be alleviated. This article explores three major problems of the construction of energy internet and their solutions: namely, the location and layout of the energy station, the environmental economic dispatch model of the energy internet with power dispatching as an example, the optimal path design of hot water pipe network combined with graph theory and genetic algorithms.


2018 ◽  
Author(s):  
Marcus Lundgren ◽  
Alexios Matamis ◽  
Zhenkan Wang ◽  
Pablo Garcia Valladolid ◽  
Mattias Richter ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 324 ◽  
Author(s):  
Juan-Luis Fuentes ◽  
Zaida Montero ◽  
María Cuaresma ◽  
Mari-Carmen Ruiz-Domínguez ◽  
Benito Mogedas ◽  
...  

The large-scale biomass production is an essential step in the biotechnological applications of microalgae. Coccomyxa onubensis is an acidophilic microalga isolated from the highly acidic waters of Río Tinto (province of Huelva, Spain) and has been shown to accumulate a high concentration of lutein (9.7 mg g−1dw), a valuable antioxidant, when grown at laboratory-scale. A productivity of 0.14 g L−1 d−1 was obtained by growing the microalga under outdoor conditions in an 800 L tubular photobioreactor. The results show a stable biomass production for at least one month and with a lutein content of 10 mg g−1dw, at pH values in the range 2.5–3.0 and temperature in the range 10–25 °C. Culture density, temperature, and CO2 availability in highly acidic medium are rate-limiting conditions for the microalgal growth. These aspects are discussed in this paper in order to improve the outdoor culture conditions for competitive applications of C. onubensis.


Sign in / Sign up

Export Citation Format

Share Document