scholarly journals Weather Prediction for Tourism Application using Time Series Algorithms

Precise projections of future events are crucial in many areas, one of which is the tourism sector. Usually counter-trials and towns spend a enormous quantity of cash in planning and preparation to accommodate (and benefit) visitors. Precisely predicting the amount of visits in the days or months, that follow would benefit the economy and tourists both. Previous studies in this field investigate predictions for a nation as a whole rather than for fine-grained fields within a nation. Weather forecasting has drawn the attention of many scientists from distinct research communities due to its impact on human life globally. The developing deep learning methods coupled with the wide accessibility of huge weather observation data and the advancement of machine learning algorithms has motivated many scientists to investigate hidden hierarchical patterns for weather forecasting in large amounts of weather data over the previous century. To predict climate information accurately, heavy statistical algorithms are used on the big quantity of historical information. Time series Analysis enables us know the fundamental forces leading to a specific trend in time series data points and enables us to predict and monitor information points by fitting suitable models into them. In this study, Holt-Winter model is used for predicting time series. The forecasting algorithm for Holt-Winters enables users to construct a time series and then use that data to forecast interest areas. Exponential smoothing allocates weights and their respective values against past data to decrease exponentially, to decrease the weight value for older data.

MAUSAM ◽  
2021 ◽  
Vol 65 (4) ◽  
pp. 509-520
Author(s):  
A.K. SHUKLA ◽  
Y.A. GARDE ◽  
INA JAIN

The present study is undertaken to develop area specific weather forecasting models based on time series data for Pantnagar, Uttarakhand. The study was carried out by using time series secondary monthly weather data of 27 years (from 1981-82 to 2007-08). The trend analysis of weather parameters was done by Mann-Kendall test statistics. The methodologies adopted to forecast weather parameters were the winter’s exponential smoothing model and Seasonal Autoregressive Integrated Moving Average (SARIMA). Comparative study has been carried out by using forecast error percentage and mean square error. The study showed that knowledge of this trend is likely to be helpful in planning and production of enterprises/crops. The study of forecast models revealed that SARIMA model is the most efficient model for forecasting of monthly maximum temperature, monthly minimum temperature and monthly humidity I. The Winter’s model was found to be the most efficient model for forecasting Monthly Humidity II but no model was found to be appropriate to forecast monthly total rainfall.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


Author(s):  
Pritpal Singh

Forecasting using fuzzy time series has been applied in several areas including forecasting university enrollments, sales, road accidents, financial forecasting, weather forecasting, etc. Recently, many researchers have paid attention to apply fuzzy time series in time series forecasting problems. In this paper, we present a new model to forecast the enrollments in the University of Alabama and the daily average temperature in Taipei, based on one-factor fuzzy time series. In this model, a new frequency based clustering technique is employed for partitioning the time series data sets into different intervals. For defuzzification function, two new principles are also incorporated in this model. In case of enrollments as well daily temperature forecasting, proposed model exhibits very small error rate.


2019 ◽  
Vol 11 (7) ◽  
pp. 861 ◽  
Author(s):  
Hao Jiang ◽  
Dan Li ◽  
Wenlong Jing ◽  
Jianhui Xu ◽  
Jianxi Huang ◽  
...  

More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during the sugarcane growing season are limited due to frequent cloudy weather in South China; the other is that the classification method requires imagery time series covering the entire growing season, which reduces the time efficiency. The Sentinel-1A (S1A) synthetic aperture radar (SAR) data featuring relatively high spatial-temporal resolution provides an ideal data source for all-weather observations. In this study, we attempted to develop a method for the early season mapping of sugarcane. First, we proposed a framework consisting of two procedures: initial sugarcane mapping using the S1A SAR imagery time series, followed by non-vegetation removal using Sentinel-2 optical imagery. Second, we tested the framework using an incremental classification strategy based on S1A imagery covering the entire 2017–2018 sugarcane season. The study area was in Suixi and Leizhou counties of Zhanjiang city, China. Results indicated that an acceptable accuracy, in terms of Kappa coefficient, can be achieved to a level above 0.902 using time series three months before sugarcane harvest. In general, sugarcane mapping utilizing the combination of VH + VV as well as VH polarization alone outperformed mapping using VV alone. Although the XGBoost classifier with VH + VV polarization achieved a maximum accuracy that was slightly lower than the random forest (RF) classifier, the XGBoost shows promising performance in that it was more robust to overfitting with noisy VV time series and the computation speed was 7.7 times faster than RF classifier. The total sugarcane areas in Suixi and Leizhou for the 2017–2018 harvest year estimated by this study were approximately 598.95 km2 and 497.65 km2, respectively. The relative accuracy of the total sugarcane mapping area was approximately 86.3%.


2020 ◽  
Vol 496 (1) ◽  
pp. 629-637
Author(s):  
Ce Yu ◽  
Kun Li ◽  
Shanjiang Tang ◽  
Chao Sun ◽  
Bin Ma ◽  
...  

ABSTRACT Time series data of celestial objects are commonly used to study valuable and unexpected objects such as extrasolar planets and supernova in time domain astronomy. Due to the rapid growth of data volume, traditional manual methods are becoming extremely hard and infeasible for continuously analysing accumulated observation data. To meet such demands, we designed and implemented a special tool named AstroCatR that can efficiently and flexibly reconstruct time series data from large-scale astronomical catalogues. AstroCatR can load original catalogue data from Flexible Image Transport System (FITS) files or data bases, match each item to determine which object it belongs to, and finally produce time series data sets. To support the high-performance parallel processing of large-scale data sets, AstroCatR uses the extract-transform-load (ETL) pre-processing module to create sky zone files and balance the workload. The matching module uses the overlapped indexing method and an in-memory reference table to improve accuracy and performance. The output of AstroCatR can be stored in CSV files or be transformed other into formats as needed. Simultaneously, the module-based software architecture ensures the flexibility and scalability of AstroCatR. We evaluated AstroCatR with actual observation data from The three Antarctic Survey Telescopes (AST3). The experiments demonstrate that AstroCatR can efficiently and flexibly reconstruct all time series data by setting relevant parameters and configuration files. Furthermore, the tool is approximately 3× faster than methods using relational data base management systems at matching massive catalogues.


Author(s):  
Sawsan Morkos Gharghory

An enhanced architecture of recurrent neural network based on Long Short-Term Memory (LSTM) is suggested in this paper for predicting the microclimate inside the greenhouse through its time series data. The microclimate inside the greenhouse largely affected by the external weather variations and it has a great impact on the greenhouse crops and its production. Therefore, it is a massive importance to predict the microclimate inside greenhouse as a preceding stage for accurate design of a control system that could fulfill the requirements of suitable environment for the plants and crop managing. The LSTM network is trained and tested by the temperatures and relative humidity data measured inside the greenhouse utilizing the mathematical greenhouse model with the outside weather data over 27 days. To evaluate the prediction accuracy of the suggested LSTM network, different measurements, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), are calculated and compared to those of conventional networks in references. The simulation results of LSTM network for forecasting the temperature and relative humidity inside greenhouse outperform over those of the traditional methods. The prediction results of temperature and humidity inside greenhouse in terms of RMSE approximately are 0.16 and 0.62 and in terms of MAE are 0.11 and 0.4, respectively, for both of them.


2021 ◽  
Author(s):  
Dhairya Vyas

In terms of Machine Learning, the majority of the data can be grouped into four categories: numerical data, category data, time-series data, and text. We use different classifiers for different data properties, such as the Supervised; Unsupervised; and Reinforcement. Each Categorises has classifier we have tested almost all machine learning methods and make analysis among them.


Sign in / Sign up

Export Citation Format

Share Document