scholarly journals Portable Wireless Drowsiness Detector

Excess sleep results in drowsiness that's not the underlying disease.Drowsiness may cause additional symptoms, like forgetfulness or falling asleep at inappropriate times. The common examples are Sleep deprivation, alcohol or drug use, medication side -effect, an outsized meal or caffeine withdrawal. A number of the causes of the drowsiness are Lifestyle factors, psychological state, Medical Condition, Medications, Sleeping disorders. The prevailing method uses the photo-PLETHYSMOGRAPHY method. In our project we are going to detect the drowsiness, this we will detect the waveforms and transform the waveforms using ARDUINO software and determine the speed of drowsiness. Using GSM, just in case of drowsiness the notification or call is shipped to the respective registered number. The developed low-cost device could avoid complicated procedures and provides continuous monitoring of the drowsiness.

2019 ◽  
pp. 297-312
Author(s):  
Elżbieta Żywucka-Kozłowska

The medical condition of human is the domain of medical science. This issue is also interesting for other fields of science. Psychology and law are anexample. The assessment of human health is a complicated task. Specialists must have considerable knowledge to check the psychological state of theperpetrator and to eliminate the criminal liability of the perpetrator if the premises are preserved.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3950
Author(s):  
Hoora Mazaheri ◽  
Hwai Chyuan Ong ◽  
Zeynab Amini ◽  
Haji Hassan Masjuki ◽  
M. Mofijur ◽  
...  

Biodiesel is a clean, renewable, liquid fuel that can be used in existing diesel engines without modification as pure or blend. Transesterification (the primary process for biodiesel generation) via heterogeneous catalysis using low-cost waste feedstocks for catalyst synthesis improves the economics of biodiesel production. Heterogeneous catalysts are preferred for the industrial generation of biodiesel due to their robustness and low costs due to the easy separation and relatively higher reusability. Calcium oxides found in abundance in nature, e.g., in seashells and eggshells, are promising candidates for the synthesis of heterogeneous catalysts. However, process improvements are required to design productive calcium oxide-based catalysts at an industrial scale. The current work presents an overview of the biodiesel production advancements using calcium oxide-based catalysts (e.g., pure, supported, and mixed with metal oxides). The review discusses different factors involved in the synthesis of calcium oxide-based catalysts, and the effect of reaction parameters on the biodiesel yield of calcium oxide-based catalysis are studied. Further, the common reactor designs used for the heterogeneous catalysis using calcium oxide-based catalysts are explained. Moreover, the catalytic activity mechanism, challenges and prospects of the application of calcium oxide-based catalysts in biodiesel generation are discussed. The study of calcium oxide-based catalyst should continue to be evaluated for the potential of their application in the commercial sector as they remain the pivotal goal of these studies.


Sensor Review ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Richard Bloss

Purpose – The purpose of this paper is to review the recent advancements in the development of wearable sensors which can continuously monitor critical medical, assess athletic activity, watch babies and serve industrial applications. Design/methodology/approach – The paper presents an in-depth review of a number of developments in wearable sensing and monitoring technologies for medical, athletic and industrial applications. Researchers and companies around the world were contacted to discuss their direction and progress in this field of medical condition and industrial monitoring, as well as discussions with medical personnel on the perceived benefits of such technology. Findings – Dramatic progress is being made in continuous monitoring of many important body functions that indicate critical medical conditions that can be life-threatening, contribute to blindness or access activity. In the industrial arena, wearable devices bring remote monitoring to a new level. Practical implications – Doctors will be able to replace one-off tests with continuous monitoring that provides a much better continuous real-time “view” into the patient’s conditions. Wearable monitors will help provide much better medical care in the future. Industrial managers and others will be able to monitor and supervise remotely. Originality/value – An expert insight into advancements in medical condition monitoring that replaces the one-time “finger prick” type testing only performed in the doctor’s office. It is also a look at how wearable monitoring is greatly improved and serving athletics, the industry and parents.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 419
Author(s):  
K Geetha ◽  
P Prabha ◽  
C Preetha Devi ◽  
S Priyadharshini ◽  
S Tamilselvan

Now a days, Industries are more equipped with automatic system. Fire monitoring is one of the applications where continuous monitoring of temperature and humidity is essential to detect the fire in the industry. Fire detection is very much necessary to protect both the industry and to conserve environment and livelihood of human. This paper presents an algorithm to detect the fire in the industry based on ZigBee and GPRS wireless sensor network which provides low cost, low maintenance and good quality service when compared with the traditional method. The hardware circuitry of proposed solution is based on microcontroller, temperature sensor along with ZigBee and GPRS modules.


2014 ◽  
Vol 67 (3) ◽  
pp. 311-316
Author(s):  
Eduardo Nozawa Caetano de Araujo ◽  
Homero Delboni Jr.

Tumbling mills are often taken as the object of optimization studies because they are a type of equipment that consume large amounts of energy. Among the current available resources to conduct such studies, mathematic modelling presents great efficiency due to its low cost, speed and reliability. The total charge and grinding media charge are very important variables to conduct modelling exercises that aim at power draw and product size distribution forecasting. However, the common measurement methods require people entering the equipment, which carries a number of adversities related to confined spaces. In this regard, this paper presents the development of a method and the prototype of a device able to measure tumbling mill charges, quickly, precisely, with low cost and, above all, ensuring safety. The result of this work is a method that allows equivalent or superior precision in comparison to the existing methods, whose main aspect is to eliminate the requirement of people entering dangerous environments, such as tumbling mills.


2021 ◽  
Author(s):  
Elias Dimitriou ◽  
Georgios Poulis ◽  
Anastasios Papadopoulos

<p>Good water quality status in rivers and lakes is vital for both human well-being and biodiversity conservation and requires efficient monitoring and restoration strategies. This is reflected in an increasing number of International and National legislations which enforce water resources management and monitoring at a basin scale.</p><p>For this purpose, state-of-the-art monitoring schemes have been developed by using low-cost, technologically advanced sensors and Internet of Things (IoT) infrastructure. Remote sensing offers also a good water monitoring alternative but is more appropriate for medium to large water bodies with less dynamic character in comparison to small scale, temporary rivers.</p><p>Recent technological advances in sensors technology, energy supply, telecommunication protocols and data handling, facilitate the use of automated monitoring stations, but still, deployment of extended networks with readily available data remains far from common practice. Installation and operational costs for the development of such monitoring networks are among the most commonly faced challenges.</p><p>The main aim of this effort is to present the development of a network of automatic monitoring stations that measure in near real time water level and physicochemical parameters in several Greek rivers. This infrastructure has been developed under the project “Open ELIoT” (Open Internet of Things infrastructure for online environmental services - https://www.openeliot.com/en/), which was funded by the Greek National Structural Funds. It includes a low cost and easy to produce hardware node, coupled with commercial sensors of industrial specifications, as well as an IoT data platform, elaborating and presenting data, based on open technologies.</p><p>During its initial operation phase, the system has been deployed in sites with different hydrological regimes and various pressures to water quality, including (a) an urban Mediterranean stream (Pikrodafni stream), and (b) the urban part of a continental river running through an agricultural area (Lithaios stream).</p><p>Preliminary data on the continuous monitoring of sites (a) and (b) are presented here, reflecting the differences in pressures to the respective water bodies. Pikrodafni stream which is located close to the center of Athens – Greece and receives a lot of pressure from urban waste, illustrates Dissolved Oxygen (DO) concentration with a heavily skewed distribution towards low values (mean value: 2.15 mg/l and median: 0.93 mg/l). On the contrary, in Lithaios stream, which is more affected by agricultural runoff, dissolved oxygen data approach a normal distribution (mean value: 6.93 mg/l and median: 7.03 mg/l). The 25<sup>th</sup> and 75<sup>th</sup> percentiles in Pikrodafni stream are: 0.1 mg/l and 3.47 mg/l respectively while in Lithaios stream are: 5.6 mg/l and 8.45 mg/l. The average water temperature is similar to both streams (18.8 oC in Pikrodafni and 16.2 oC in Lithaios). Therefore, the significant differences in DO concentrations between the two streams indicate the need for continuous monitoring of data that facilitates the identification of pressures and enables stakeholders to respond to pollution events in time.</p>


2021 ◽  
Author(s):  
Shiiun Bak Wong ◽  
Nur Dalila Alias ◽  
Mohd Kamal Arif ◽  
Majid Shabazi

Abstract The rise of offshore marginal field development and low-cost CAPEX has given an impetus to O&G operators to challenge the common structural platform design especially for wellhead platform type. Demand to reduce the platform weight has been observed for the past 20 years. Typically, the challenge to meet this demand will be tremendous once the water depth exceed 50m. This paper will elaborate on how using an engineered design approach was implemented to obtain fast track onshore fabrication and offshore installation and meet the operator demand for minimal structural concept.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 289 ◽  
Author(s):  
Davide Notti ◽  
Alberto Cina ◽  
Ambrogio Manzino ◽  
Alessio Colombo ◽  
Iosif Horea Bendea ◽  
...  

In recent years, the development of low-cost GNSS sensors allowed monitoring in a continuous way movement related to natural processes like landslides with increasing accuracy and limited efforts. In this work, we present the first results of an experimental low-cost GNSS continuous monitoring applied to an unstable slope affecting the Madonna del Sasso Sanctuary (NW Italy). The courtyard of Sanctuary is built on two unstable blocks delimited by a high cliff. Previous studies and non-continuous monitoring showed that blocks suffer a seasonal cycle of thermal expansion and a long-term trend to downslope a few millimeters (2/3) per year. The presence of a continuous monitoring solution could be an essential help to better understand the kinematics of unstable slope. Continuous monitoring could help to forecast a possible paroxysm phase that could end with a failure of the unstable area. The first year of experimental measurements shows a millimetric accuracy of low-cost GNSS, and the long-term trend is in agreement with other monitoring data. We also propose a methodological approach that considers the use of semi-automatized procedures for the identification of anomalous trends and a risk communication strategy. Pro and cons of the proposed methodology are also discussed.


2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Khushboo Qayyum ◽  
Idrees Zaman ◽  
Anna Förster

Abstract In oceans, fish usually live in an environment that is best suited for their growth. When these fish are introduced into man-made environment, e.g. in mariculture and aquaculture set-ups, the physical parameters might stray from their ideal values, resulting in improper growth and undesired outcomes. Hence, to prevent these undesirable outcomes, continuous monitoring of the physical parameters of the water such as pH, temperature and dissolved oxygen is required. In this work, we present a system called H2O sense, which continuously monitors the physical parameters of the water in tanks and alerts the user in case the values deviate from ideal. We use only low-power, low-cost hardware and open-source development tools, which makes the system easily applicable to various settings. The deployment of our system in the Maritime Laboratory of the University of Namibia shows its efficacy. Furthermore, we evaluate in detail the performance of our system and discuss its applicability in similar challenged environments.


Sign in / Sign up

Export Citation Format

Share Document